Show simple item record

dc.contributor.authorGhommem, M.
dc.contributor.authorCalo, Victor
dc.contributor.authorEfendiev, Y.
dc.identifier.citationGhommem, M. and Calo, V. and Efendiev, Y. 2014. Mode decomposition methods for flows in high-contrast porous media. A global approach. Journal of Computational Physics. 257 (Pt A): pp. 400-413.

We apply dynamic mode decomposition (DMD) and proper orthogonal decomposition (POD) methods to flows in highly-heterogeneous porous media to extract the dominant coherent structures and derive reduced-order models via Galerkin projection. Permeability fields with high contrast are considered to investigate the capability of these techniques to capture the main flow features and forecast the flow evolution within a certain accuracy. A DMD-based approach shows a better predictive capability due to its ability to accurately extract the information relevant to long-time dynamics, in particular, the slowly-decaying eigenmodes corresponding to largest eigenvalues. Our study enables a better understanding of the strengths and weaknesses of the applicability of these techniques for flows in high-contrast porous media. Furthermore, we discuss the robustness of DMD- and POD-based reduced-order models with respect to variations in initial conditions, permeability fields, and forcing terms. © 2013 Elsevier Inc.

dc.publisherAcademic Press
dc.titleMode decomposition methods for flows in high-contrast porous media. A global approach
dc.typeJournal Article
dcterms.source.titleJournal of Computational Physics
curtin.departmentDepartment of Applied Geology
curtin.accessStatusFulltext not available

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record