Impact of salinity on CO2containment security in highly heterogeneous reservoirs
Access Status
Authors
Date
2017Type
Metadata
Show full item recordCitation
Source Title
DOI
ISSN
School
Collection
Abstract
© 2017 Society of Chemical Industry and John Wiley & Sons, Ltd. It is well established that brine salinity can vary substantially in prospective CO 2 geo-storage reservoirs. However, the impact of salinity on containment security has received only little attention. We thus used a compositional reservoir simulation to evaluate the effect of salinity on CO 2 plume migration and CO 2 trapping capacities in a 3D heterogeneous reservoir. The used heterogeneous reservoir consists of two formations: the bottom part of the reservoir is a fluvial reservoir, and the top part represents a near-shore environment. Our results clearly indicate that salinity has a significant influence on CO 2 migration and the relative amount of mobile, residual, and dissolved CO 2 . Lower salinity decreases CO 2 mobility and migration distance, and enhances residual and solubility trapping significantly. We thus conclude that brine salinity is an important impact factor in the context of CO 2 geo-storage, and that less saline reservoirs are preferable CO 2 sinks due to increased storage capacity and containment security.
Related items
Showing items related by title, author, creator and subject.
-
Lisk, Mark (2012)A comprehensive examination of the hydrocarbon charge and formation water history of the central Vulcan Sub-basin, Timor Sea has been completed and a model developed to describe the evolution of the region’s petroleum ...
-
Flett, Matthew Alexander (2008)The injection of carbon dioxide (CO2) into saline formations for the purpose of limiting greenhouse gas emissions has been proposed as an alternative to the atmospheric venting of carbon dioxide. In the evaluation process ...
-
Al-Khdheeawi, Emad Abdulhusain; Vialle, S.; Sarmadivaleh, Mohammad; Barifcani, Ahmed; Iglauer, Stefan (2017)CO2 migration and storage capacity are highly affected by various parameters (e.g. reservoir temperature, vertical to horizontal permeability ratio, cap rock properties, aquifer depth and the reservoir heterogeneity). One ...