Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Performance predictions of dry and wet vapors ejectors over entire operational range

    Access Status
    Open access via publisher
    Authors
    Li, F.
    Chang, Z.
    Tian, Q.
    Wu, Changzhi
    Wang, Xiangyu
    Date
    2017
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Li, F. and Chang, Z. and Tian, Q. and Wu, C. and Wang, X. 2017. Performance predictions of dry and wet vapors ejectors over entire operational range. Energies. 10 (7).
    Source Title
    Energies
    DOI
    10.3390/en10071012
    ISSN
    1996-1073
    School
    Department of Construction Management
    URI
    http://hdl.handle.net/20.500.11937/63436
    Collection
    • Curtin Research Publications
    Abstract

    © 2017 by the authors. Licensee MDPI, Basel, Switzerland. If a traditional ideal-gas ejector model is used to evaluate the performance of a wet vapor ejector, large deviations from the experimental results will be unavoidable. Moreover, the model usually fails to assess the ejector performance at subcritical mode. In this paper, we proposed a novel model to evaluate the performance of both dry and wet vapors ejectors over the entire operational range at critical or subcritical modes. The model was obtained by integrating the linear characteristic equations of ejector with critical and breakdown points models, which were developed based on the assumptions of constant-pressure mixing and constant-pressure disturbing. In the models, the equations of the two-phase speed of sound and the property of real gas were introduced and ejector component efficiencies were optimized to improve the accuracy of evaluation. It was validated that the proposed model for the entire operational range can achieve a better performance than those existing for R134a, R141b and R245fa. The critical and breakdown points models were further used to investigate the effect of operational parameters on the performance of an ejector refrigeration system (ERS). The theoretical results indicated that decreasing the saturated generating temperature when the actual condensing temperature decreases, and/or increasing the saturated evaporating temperature can improve the performance of ERS significantly. Moreover, superheating the primary flow before it enters the ejector can further improve the performance of an ERS using R134a as a working fluid.

    Related items

    Showing items related by title, author, creator and subject.

    • Membrane performance and build-up of solute during small scale reverse osmosis operation
      Nasir, Subriyer (2007)
      Reverse Osmosis (RO) is widely accepted as an alternative method to produce freshwater from different feed water sources. This technology competitively substitutes the thermal processes in the near future because of several ...
    • Modelling the physics of prawn trawling for fisheries management
      Sterling, David John (2005)
      Management of prawn trawling fisheries is a difficult task due to the competing interests of strongly motivated stakeholders and interest groups. This occurs because prawn trawling operations are technically complex, ...
    • Development of an analytical solution for the parallel second order reaction scheme for chlorine decay modelling
      Jabari Kohpaei, Ahmad (2010)
      Chlorine is broadly used for water disinfection at the final stage of water treatment because of its high performance to inactivate pathogenic microorganisms, its lower cost compared to other well-known disinfectants and ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.