Show simple item record

dc.contributor.authorRana, Santu
dc.contributor.authorLiu, Wan-Quan
dc.contributor.authorLazarescu, Mihai
dc.contributor.authorVenkatesh, Svetha
dc.contributor.editorNA
dc.date.accessioned2017-01-30T10:52:52Z
dc.date.available2017-01-30T10:52:52Z
dc.date.created2014-10-28T02:23:21Z
dc.date.issued2008
dc.identifier.citationRana, S. and Liu, W. and Lazarescu, M. and Venkatesh, S. 2008. Recognising faces in unseen modes: a tensor based approach, in IEEE Conference on Computer Vision and Pattern recognition, Jun 23-28 2008. Anchorage, Alaska: IEEE.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/6414
dc.identifier.doi10.1109/CVPR.2008.4587813
dc.description.abstract

This paper addresses the limitation of current multilinear techniques (multilinear PCA, multilinear ICA) when applied to face recognition for handling faces in unseen illumination and viewpoints. We propose a new recognition method, exploiting the interaction of all the subspaces resulting from multilinear decomposition (for both multilinear PCA and ICA), to produce a new basis called multilinear-eigenmodes. This basis offers the flexibility to handle face images at unseen illumination or viewpoints. Experiments on benchmarked datasets yield superior performance in terms of both accuracy and computational cost.

dc.publisherIEEE
dc.titleRecognising faces in unseen modes: a tensor based approach
dc.typeConference Paper
dcterms.source.titleIEEE Computer Society conference on computer vision and pattern recognition
dcterms.source.seriesIEEE Computer Society conference on computer vision and pattern recognition
dcterms.source.isbn9781424422432
dcterms.source.conference26th IEEE conference on computer vision and pattern recognition
dcterms.source.conference-start-dateJun 24 2008
dcterms.source.conferencelocationAnchorage, Alaska
dcterms.source.placeUSA
curtin.departmentDepartment of Computing
curtin.accessStatusFulltext not available


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record