Multi-fluid reactive modeling of fluidized bed pyrolysis process
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
A multiphase reactive model of biomass pyrolysis process has been implemented by integrating the reaction kinetics of the thermo-chemical decomposition of biomass with the hydrodynamics of the fluidized bed. The model was validated with the experimental data of biomass pyrolysis in the presence of a sand bed. The simulation results were examined to analyze the effect of reactor temperature, superficial gas velocity and biomass particle size on the bed hydrodynamics and product yields. It was found that at temperatures higher than 500 °C, there was a significant conversion of primary tar into NCG (non-condensable gases) due to thermal cracking inside the reactor. However, the increase in superficial gas velocity led to higher concentration of tar due to lower residence time for tar cracking reactions. Any increase in biomass particle size reduced the yield of volatile products due to decrease in the rate of heat transfer, which in turn increased the yield of biochar.
Related items
Showing items related by title, author, creator and subject.
-
Abdullah, Hanisom binti (2010)Mallee biomass is considered to be a second-generation renewable feedstock in Australia and will play an important role in bioenergy development in Australia. Its production is of large-scale, low cost, small carbon ...
-
Gao, Xiangpeng (2011)Coal is an important part of Australia's energy mix and is expected to continue to play an essential role in supplying cheap and secure energy for powering the Australian economy in the foreseeable future. However, ...
-
Berwick, Lyndon (2009)The analytical capacity of MSSV pyrolysis has been used to extend the structural characterisation of aquatic natural organic matter (NOM). NOM can contribute to various potable water issues and is present in high ...