Curtin University Homepage
  • Library
  • FAQ
    • Log in

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Cold plumes trigger contamination of oceanic mantle wedges with continental crust-derived sediments: Evidence from chromitite zircon grains of eastern Cuban ophiolites

    Access Status
    Open access via publisher
    Authors
    Proenza, J.
    González-Jiménez, J.
    Garcia-Casco, A.
    Belousova, E.
    Griffin, W.
    Talavera, Cristina
    Rojas-Agramonte, Y.
    Aiglsperger, T.
    Navarro-Ciurana, D.
    Pujol-Solà, N.
    Gervilla, F.
    O'Reilly, S.
    Jacob, D.
    Date
    2018
    Collection
    • Curtin Research Publications
    Type
    Journal Article
    Metadata
    Show full item record
    Abstract

    © 2018 China University of Geosciences (Beijing) and Peking University. The origin of zircon grains, and other exotic minerals of typical crustal origin, in mantle-hosted ophiolitic chromitites are hotly debated. We report a population of zircon grains with ages ranging from Cretaceous (99 Ma) to Neoarchean (2750 Ma), separated from massive chromitite bodies hosted in the mantle section of the supra-subduction (SSZ)-type Mayarí-Baracoa Ophiolitic Belt in eastern Cuba. Most analyzed zircon grains (n = 20, 287 ± 3 Ma to 2750 ± 60 Ma) are older than the early Cretaceous age of the ophiolite body, show negative e Hf (t) (-26 to -0.6) and occasional inclusions of quartz, K-feldspar, biotite, and apatite that indicate derivation from a granitic continental crust. In contrast, 5 mainly rounded zircon grains (297 ± 5 Ma to 2126 ± 27 Ma) show positive e Hf (t) (+0.7 to +13.5) and occasional apatite inclusions, suggesting their possible crystallization from melts derived from juvenile (mantle) sources. Interestingly, younger zircon grains are mainly euhedral to subhedral crystals, whereas older zircon grains are predominantly rounded grains. A comparison of the ages and Hf isotopic compositions of the zircon grains with those of nearby exposed crustal terranes suggest that chromitite zircon grains are similar to those reported from terranes of Mexico and northern South America. Hence, chromitite zircon grains are interpreted as sedimentary-derived xenocrystic grains that were delivered into the mantle wedge beneath the Greater Antilles intra-oceanic volcanic arc by metasomatic fluids/melts during subduction processes. Thus, continental crust recycling by subduction could explain all populations of old xenocrystic zircon in Cretaceous mantle-hosted chromitites from eastern Cuba ophiolite. We integrate the results of this study with petrological-thermomechanical modeling and existing geodynamic models to propose that ancient zircon xenocrysts, with a wide spectrum of ages and Hf isotopic compositions, can be transferred to the mantle wedge above subducting slabs by cold plumes.

    Citation
    Proenza, J. and González-Jiménez, J. and Garcia-Casco, A. and Belousova, E. and Griffin, W. and Talavera, C. and Rojas-Agramonte, Y. et al. 2018. Cold plumes trigger contamination of oceanic mantle wedges with continental crust-derived sediments: Evidence from chromitite zircon grains of eastern Cuban ophiolites. Geoscience Frontiers.
    Source Title
    Geoscience Frontiers
    URI
    http://hdl.handle.net/20.500.11937/65446
    DOI
    10.1016/j.gsf.2017.12.005
    Department
    John de Laeter Centre

    Related items

    Showing items related by title, author, creator and subject.

    • The recycling of chromitites in ophiolites from southwestern North America
      González-Jiménez, J.; Camprubí, A.; Colás, V.; Griffin, W.; Proenza, J.; O'Reilly, S.; Centeno-García, E.; García-Casco, A.; Belousova, E.; Talavera, Cristina; Farré-de-Pablo, J.; Satsukawa, T. (2017)
      © 2017 Elsevier B.V. Podiform chromitites occur in mantle peridotites of the Late Triassic Puerto Nuevo Ophiolite, Baja California Sur State, Mexico. These are high-Cr chromitites [Cr# (Cr/Cr + Al atomic ratio = 0.61–0.69)] ...
    • Zircon recycling and crystallization during formation of chromite- and Ni-arsenide ores in the subcontinental lithospheric mantle (Serranía de Ronda, Spain)
      González-Jiménez, J.; Marchesi, C.; Griffin, W.; Gervilla, F.; Belousova, E.; Garrido, C.; Romero, R.; Talavera, Cristina; Leisen, M.; O'Reilly, S.; Barra, F.; Martin, L. (2017)
      The ultramafic massifs of the Serranía de Ronda (namely Ronda, Ojén and Carratraca) are portions of Proterozoic (~1.2-1.8Ga) subcontinental lithospheric mantle (SCLM) affected by partial melting and infiltration of melts. ...
    • Early Eocene clinoenstatite boninite and boninite-series dikes of the ophiolite of New Caledonia; a witness of slab-derived enrichment of the mantle wedge in a nascent volcanic arc
      Cluzel, D.; Ulrich, M.; Jourdan, Fred; Meffre, S.; Paquette, J.; Audet, M.; Secchiari, A.; Maurizot, P. (2016)
      © 2016 Elsevier B.V.Clinoenstatite-bearing boninites (CE-boninite) from the serpentinite sole of the Cenozoic ophiolite of New Caledonia near Nepoui have been dated by the 40Ar/39Ar method, yielding two plateau ages of ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorsTitlesSubjectsDocument TypesThis CollectionIssue DateAuthorsTitlesSubjectsDocument Types

    My Account

    Log in

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Connect with Curtin

    • 
    • 
    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Send FeedbackContact Us
    DSpace software copyright © 2002-2015  DuraSpace