Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Towards establishing a combined rate law of nucleation and crystal growth – The case study of gypsum precipitation

    Access Status
    Fulltext not available
    Authors
    Rendel, P.
    Gavrieli, I.
    Wolff-Boenisch, Domenik
    Ganor, J.
    Date
    2018
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Rendel, P. and Gavrieli, I. and Wolff-Boenisch, D. and Ganor, J. 2018. Towards establishing a combined rate law of nucleation and crystal growth – The case study of gypsum precipitation. Journal of Crystal Growth. 485: pp. 28-40.
    Source Title
    Journal of Crystal Growth
    DOI
    10.1016/j.jcrysgro.2017.12.037
    ISSN
    0022-0248
    School
    School of Earth and Planetary Sciences (EPS)
    URI
    http://hdl.handle.net/20.500.11937/65517
    Collection
    • Curtin Research Publications
    Abstract

    © 2017 Elsevier B.V. The main obstacle in the formulation of a quantitative rate-model for mineral precipitation is the absence of a rigorous method for coupling nucleation and growth processes. In order to link both processes, we conducted a series of batch experiments in which gypsum nucleation was followed by crystal growth. Experiments were carried out using various stirring methods in several batch vessels made of different materials. In the experiments, the initial degree of supersaturation of the solution with respect to gypsum (O gyp ) was set between 1.58 and 1.82. Under these conditions, heterogeneous nucleation is the dominant nucleation mode. Based on changes in SO 4 2- concentration with time, the induction time of gypsum nucleation and the following rate of crystal growth were calculated for each experiment. The induction time (6–104 h) was found to be a function of the vessel material, while the rates of crystal growth, which varied over three orders of magnitude, were strongly affected by the stirring speed and its mode (i.e. rocking, shaking, magnetic stirrer, and magnetic impeller). The SO 4 2- concentration data were then used to formulate a forward model that couples the simple rate laws for nucleation and crystal growth of gypsum into a single kinetic model. Accordingly, the obtained rate law is based on classical nucleation theory and heterogeneous crystal growth.

    Related items

    Showing items related by title, author, creator and subject.

    • The role of impurities and additives in the crystallisation of gypsum
      Muryanto, Stefanus (2002)
      Scale formation is one of the persistent problems in mineral processing and related industries. One of the main components of the scale is frequently gypsum or calcium sulphate dihydrate (= CaS04.2H20). Gypsum is formed ...
    • Solubility and crystal growth of sodium nitrate from mixed alcohol – water solvents
      Rossiter, Angelina Jane (2009)
      Due to the ductile nature of the sodium nitrate crystal which deforms plastically under high levels of strain, most of the crystal growth studies in aqueous solution have focussed on the influence of tensile strain, ...
    • Experimental kinetics studies and wavelet-based modelling of a reactive crystallisation system
      Utomo, Johan (2009)
      This thesis has made two significant contributions to the field of reactive crystallisation. First, new data from batch cooling crystallisation and semi-batch reactive crystallisation experiments of mono-ammonium phosphate ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.