RIM: Anatomy of a Weed Management Decision Support System for Adaptation and Wider Application
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© 2015 Weed Science Society of America. RIM, or "Ryegrass Integrated Management," is a model-based software allowing users to conveniently test and compare the long-term performance and profitability of numerous ryegrass control options used in Australian cropping systems. As a user-friendly decision support system that can be used by farmers, advisers, and industry professionals, RIM can aid the delivery of key recommendations among the agricultural community for broadacre cropping systems threatened by herbicide resistance. This paper provides advanced users and future developers with the keys to modify the latest version of RIM in order to facilitate future updates, modifications, and adaptations to other situations. The various components of RIM are mapped and explained, and the key principles underlying the construction of the model are explained. The implementation of RIM into a Microsoft Excel® software format is also documented, with details on how user inputs are coded and parameterized. An overview of the biological, agronomic, and economic components of the model is provided, with emphasis on the ryegrass biological characteristics most critical for its effective management. The extreme variability of these parameters and the subsequent limits of RIM are discussed. The necessary compromises were achieved by emphasizing the primary end-use of the program as a decision support system for farmers and advisors.
Related items
Showing items related by title, author, creator and subject.
-
Hicks, Michael John (2012)This thesis advances the understanding of information technology (IT) governance research by considering the question “How do user stakeholders influence the planning and implementation of IT governance?” IT has become ...
-
El-Mowafy, Ahmed ; Wang, Kan; El-Sayed, Hassan (2022)Integrity monitoring (IM) is a vital task for precise real-time positioning in road transportation, autonomous driving, and drones, where safety is essential. IM has the main tasks of detection and exclusion of faulty ...
-
Arora, Balwinder Singh (2012)The precise positioning applications have long been carried out using dual frequency carrier phase and code observables from the Global Positioning System (GPS). The carrier phase observables are very precise in comparison ...