Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    The effect of stress and pore pressure on formation permeability of ultra-low-permeability reservoir

    Access Status
    Fulltext not available
    Authors
    Ma, F.
    He, S.
    Zhu, H.
    Xie, Sam
    Jiao, C.
    Date
    2012
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Ma, F. and He, S. and Zhu, H. and Xie, S. and Jiao, C. 2012. The effect of stress and pore pressure on formation permeability of ultra-low-permeability reservoir. ZzPetroleum Science and Technlogy. 30 (12): pp. 1221-1231.
    Source Title
    ZzPetroleum Science and Technlogy
    DOI
    10.1080/10916466.2010.501361
    ISSN
    1091-6466
    School
    WASM: Minerals, Energy and Chemical Engineering (WASM-MECE)
    URI
    http://hdl.handle.net/20.500.11937/65609
    Collection
    • Curtin Research Publications
    Abstract

    Low-permeability reservoirs have attracted increased attention from most oil companies due to increased demand and limited reserves in conventional reservoirs. Most scholars agree that worldwide hydrocarbon production decline from conventional reservoirs will be compensated for by the development of low-permeability reservoirs to satisfy growing demand. During the production life cycle of a low- permeability reservoir, permeability at any given location may change in response to the change of stress due to depressurization. Waterflooding is an important method used to develop low-permeability oil reservoirs. Therefore, it is necessary to study whether and how a stress state change can affect formation permeability. However, it is seldom seen the relevant research and report. This article presents a laboratory procedure to simulate the stress state change of ultra-low-permeability formation during injection and production applying cores from Changqing oilfield and evaluate the effect of stress on formation permeability under reservoir conditions using brine as the fluid medium. This work focuses on how formation permeability changes with stress change during injection and drawdown and discusses the difference in permeability change between injection and production. The analysis is not only on the basis of selecting zero pore pressure but also in situ pressure as the starting point; that is, a reference point. The results indicate that reservoir permeability changes during both drawdown and injection are caused by stress variation. Microcracks are the main factor resulting in this permeability change. This experimental method simulated formation stress state and flow behavior as truly. The results are meaningful for analyzing oil well production and reservoir development for ultra-low-permeability reservoir. Copyright © Taylor & Francis Group, LLC.

    Related items

    Showing items related by title, author, creator and subject.

    • Investigation of pressure and saturation effects on elastic parameters: an integrated approach to improve time-lapse interpretation
      Grochau, Marcos Hexsel (2009)
      Time-lapse seismic is a modern technology for monitoring production-induced changes in and around a hydrocarbon reservoir. Time-lapse (4D) seismic may help locate undrained areas, monitor pore fluid changes and identify ...
    • Fluid migration and hydrocarbon charge history of the vulcan sub-basin
      Lisk, Mark (2012)
      A comprehensive examination of the hydrocarbon charge and formation water history of the central Vulcan Sub-basin, Timor Sea has been completed and a model developed to describe the evolution of the region’s petroleum ...
    • Modelling borehole wave signatures in elastic and poroelastic media with spectral method
      Karpfinger, Florian (2009)
      Borehole sonic measurements are an important tool to characterize formation and completion properties of hydrocarbon or water reservoirs. Such measurements can provide direct information about rock physical parameters ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.