Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Water Splitting with an Enhanced Bifunctional Double Perovskite

    Access Status
    Fulltext not available
    Authors
    Wang, J.
    Gao, Y.
    Chen, D.
    Liu, J.
    Zhang, Z.
    Shao, Zongping
    Ciucci, F.
    Date
    2018
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Wang, J. and Gao, Y. and Chen, D. and Liu, J. and Zhang, Z. and Shao, Z. and Ciucci, F. 2018. Water Splitting with an Enhanced Bifunctional Double Perovskite. ACS Catalysis. 8 (1): pp. 364-371.
    Source Title
    ACS Catalysis
    DOI
    10.1021/acscatal.7b02650
    ISSN
    2155-5435
    School
    WASM: Minerals, Energy and Chemical Engineering (WASM-MECE)
    URI
    http://hdl.handle.net/20.500.11937/65636
    Collection
    • Curtin Research Publications
    Abstract

    © 2017 American Chemical Society. The rational design of highly active and durable electrocatalysts for overall water splitting is a formidable challenge. In this work, a double perovskite oxide, i.e., NdBaMn 2 O 5.5 , is proposed as a bifunctional electrode material for water electrolysis. Layered NdBaMn 2 O 5.5 demonstrates significant improvement in catalyzing oxygen and hydrogen evolution reactions (OER and HER, respectively), in contrast to other related materials, including disordered Nd 0.5 Ba 0.5 MnO 3-d as well as NdBaMn 2 O 5.5-d and NdBaMn 2 O 5.5+d (d < 0.5). Importantly, NdBaMn 2 O 5.5 has an OER intrinsic activity (~24 times) and a mass activity (~2.5 times) much higher than those of the benchmark RuO 2 at 1.7 V versus the reversible hydrogen electrode. In addition, NdBaMn 2 O 5.5 achieves a better overall water splitting activity at large potentials ( > 1.75 V) and catalytic durability in comparison to those of Pt/C-RuO 2 , making it a promising candidate electrode material for water electrolyzers. The substantially enhanced performance is attributed to the approximately half-filled e g orbit occupancy, optimized O p-band center location, and distorted structure. Interestingly, for the investigated perovskite oxides, OER and HER activity seem to be correlated; i.e., the material achieving a higher OER activity is also more active in catalyzing HER.

    Related items

    Showing items related by title, author, creator and subject.

    • Size exclusion chromatography as a tool for natural organic matter characterisation in drinking water treatment
      Allpike, Bradley (2008)
      Natural organic matter (NOM), ubiquitous in natural water sources, is generated by biogeochemical processes in both the water body and in the surrounding watershed, as well as from the contribution of organic compounds ...
    • Malodorous dimethylpolysulfides in Perth drinking water.
      Heitz, Anna (2002)
      The formation of an objectionable "swampy" odour in drinking water distribution systems in Perth, Western Australia, was first described by Wajon and co-authors in the mid-1980s (Wajon et al., 1985; Wajon et al., 1986; ...
    • Investigation of the impact of nitrate injection to control sourcing problem in oil reservoir : benefit and side effects on steel materials
      Halim, Amalia Yunita (2011)
      The successful control of reservoir souring by nitrate injection has been well documented in the literature. Recent interest has centred on how nitrate application can increase the corrosion risk in pipelines and metal ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.