Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    A Palaeoproterozoic tectono-magmatic lull as a potential trigger for the supercontinent cycle

    Access Status
    Fulltext not available
    Authors
    Spencer, Christopher
    Murphy, J.
    Kirkland, Chris
    Liu, Y.
    Mitchell, R.
    Date
    2018
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Spencer, C. and Murphy, J. and Kirkland, C. and Liu, Y. and Mitchell, R. 2018. A Palaeoproterozoic tectono-magmatic lull as a potential trigger for the supercontinent cycle. Nature Geoscience: pp. 1-5.
    Source Title
    Nature Geoscience
    DOI
    10.1038/s41561-017-0051-y
    ISSN
    1752-0894
    School
    School of Earth and Planetary Sciences (EPS)
    Funding and Sponsorship
    http://purl.org/au-research/grants/arc/FL150100133
    URI
    http://hdl.handle.net/20.500.11937/65686
    Collection
    • Curtin Research Publications
    Abstract

    © 2018 © Macmillan Publishers Limited, part of Springer Nature 2018 The geologic record exhibits periods of active and quiescent geologic processes, including magmatism, metamorphism and mineralization. This apparent episodicity has been ascribed either to bias in the geologic record or fundamental changes in geodynamic processes. An appraisal of the global geologic record from about 2.3 to 2.2 billion years ago demonstrates a Palaeoproterozoic tectono-magmatic lull. During this lull, global-scale continental magmatism (plume and arc magmatism) and orogenic activity decreased. There was also a lack of passive margin sedimentation and relative plate motions were subdued. A global compilation of mafic igneous rocks demonstrates that this episode of magmatic quiescence was terminated about 2.2 billion years ago by a flare-up of juvenile magmatism. This post-lull magmatic flare-up is distinct from earlier such events, in that the material extracted from the mantle during the flare-up yielded significant amounts of continental material that amalgamated to form Nuna — Earth’s first hemispheric supercontinent. We posit that the juvenile magmatic flare-up was caused by the release of significant thermal energy that had accumulated over some time. This flux of mantle-derived energy could have provided a mechanism for dramatic growth of continental crust, as well as the increase in relative plate motions required to complete the transition to modern plate tectonics and the supercontinent cycle. These events may also be linked to Palaeoproterozoic atmospheric oxygenation and equilibration of the carbon cycle.

    Related items

    Showing items related by title, author, creator and subject.

    • The Early Late Cretaceous (ca. 93 Ma) norites and hornblendites in the Milin area, eastern Gangdese: Lithosphere–asthenosphere interaction during slab roll-back and an insight into early Late Cretaceous (ca. 100–80 Ma) magmatic “flare-up” in southern Lhasa (Tibet)
      Ma, L.; Wang, Qiang; Li, Zheng-Xiang; Wyman, D.; Jiang, Z.; Yang, J.; Gou, G.; Guo, H. (2013)
      At more than 500 km in length, the mainly Jurassic–Early Eocene Gangdese batholith is one of the most important constituents of the southern Lhasa sub-block and provides an ideal site for study of Tibetan orogenesis. ...
    • Sources and conditions for the formation of Jurassic post-orogenic high-K granites in the Western Guangdong Province, SE China
      Huang, Hui-Qing (2012)
      High-K granites have become volumetrically important since at least Proterozoic. Their study bears important implications to crustal and tectonic evolutions. Despite of intensive research, sources and conditions for the ...
    • Petrogenesis and tectonic significance of the ~850 Ma Gangbian alkaline complex in South China: Evidence from in situ zircon U-Pb dating, Hf-O isotopes and whole-rock geochemistry
      Li, X.; Li, W.; Li, Q.; Wang, Xuan-ce; Liu, Y.; Yang, Y. (2010)
      The Gangbian alkaline complex in the southeastern Yangtze Block (South China) is composed of Si-undersaturated pyroxene syenites and Si-saturated to -oversaturated syenites and quartz monzonites. SIMS zircon U–Pb analyses ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.