Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Thermodynamics and performance of the Mg-H-F system for thermochemical energy storage applications

    65885.pdf (1.956Mb)
    Access Status
    Open access
    Authors
    Tortoza, Mariana
    Humphries, Terry
    Sheppard, Drew
    Paskevicius, Mark
    Rowles, Matthew
    Sofianos, M. Veronica
    Aguey-Zinsou, K
    Buckley, Craig
    Date
    2018
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Tortoza, M. and Humphries, T. and Sheppard, D. and Paskevicius, M. and Rowles, M. and Sofianos, M. and Aguey-Zinsou, K. et al. 2018. Thermodynamics and performance of the Mg-H-F system for thermochemical energy storage applications. Physical Chemistry Chemical Physics. 20 (4): pp. 2274-2283.
    Source Title
    Physical Chemistry Chemical Physics
    DOI
    10.1039/c7cp07433f
    ISSN
    1463-9076
    School
    School of Electrical Engineering, Computing and Mathematical Science (EECMS)
    Funding and Sponsorship
    http://purl.org/au-research/grants/arc/LP120101848
    http://purl.org/au-research/grants/arc/LP150100730
    http://purl.org/au-research/grants/arc/LE0775551
    http://purl.org/au-research/grants/arc/FT160100303
    URI
    http://hdl.handle.net/20.500.11937/65723
    Collection
    • Curtin Research Publications
    Abstract

    © 2018 the Owner Societies.

    Magnesium hydride (MgH 2 ) is a hydrogen storage material that operates at temperatures above 300 °C. Unfortunately, magnesium sintering occurs above 420 °C, inhibiting its application as a thermal energy storage material. In this study, the substitution of fluorine for hydrogen in MgH 2 to form a range of Mg(H x F 1-x ) 2 (x = 1, 0.95, 0.85, 0.70, 0.50, 0) composites has been utilised to thermodynamically stabilise the material, so it can be used as a thermochemical energy storage material that can replace molten salts in concentrating solar thermal plants. These materials have been studied by in situ synchrotron X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, temperature-programmed-desorption mass spectrometry and Pressure-Composition-Isothermal (PCI) analysis. Thermal analysis has determined that the thermal stability of Mg-H-F solid solutions increases proportionally with fluorine content, with Mg(H 0.85 F 0.15 ) 2 having a maximum rate of H 2 desorption at 434 °C, with a practical hydrogen capacity of 4.6 ± 0.2 wt% H 2 (theoretical 5.4 wt% H 2 ). An extremely stable Mg(H 0.43 F 0.57 ) 2 phase is formed upon the decomposition of each Mg-H-F composition of which the remaining H 2 is not released until above 505 °C. PCI measurements of Mg(H 0.85 F 0.15 ) 2 have determined the enthalpy (?H des ) to be 73.6 ± 0.2 kJ mol -1 H 2 and entropy (?S des ) to be 131.2 ± 0.2 J K -1 mol -1 H 2 , which is slightly lower than MgH 2 with ?H des of 74.06 kJ mol -1 H 2 and ?S des = 133.4 J K -1 mol -1 H 2 . Cycling studies of Mg(H 0.85 F 0.15 ) 2 over six absorption/desorption cycles between 425 and 480 °C show an increased usable cycling temperature of ~80 °C compared to bulk MgH 2 , increasing the thermal operating temperatures for technological applications.

    Related items

    Showing items related by title, author, creator and subject.

    • Concentrating solar thermal heat storage using metal hydrides
      Harries, D.; Paskevicius, Mark; Sheppard, Drew; Price, T.; Buckley, Craig (2012)
      Increased reliance on solar energy conversion technologies will necessarily constitute a major plank of any forward global energy supply strategy. It is possible that solar photovoltaic (PV) technology and concentrating ...
    • Thermochemical batteries using metal carbonates: A review of heat storage and extraction
      Desage, Lucie; McCabe, Eleanor ; Vieira, Adriana P.; Humphries, Terry ; Paskevicius, Mark ; Buckley, Craig E. (2023)
      The development of energy storage systems is essential for the full deployment of renewable energy technologies. Heat storage through high-temperature thermochemical reactions is promising for integration into power ...
    • X-ray and neutron scattering of multiferroic LuFe2O4
      Lawrence, Shane Michael (2011)
      Multiferroic materials have recently begun to attract significant scientific interest due to their potential applications in the design of modern electronic devices. Currently, the magnetic properties of materials form ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.