Automatic fish species classification in underwater videos: Exploiting pre-trained deep neural network models to compensate for limited labelled data
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© International Council for the Exploration of the Sea 2017. All rights reserved. There is a need for automatic systems that can reliably detect, track and classify fish and other marine species in underwater videos without human intervention. Conventional computer vision techniques do not perform well in underwater conditions where the background is complex and the shape and textural features of fish are subtle. Data-driven classification models like neural networks require a huge amount of labelled data, otherwise they tend to over-fit to the training data and fail on unseen test data which is not involved in training. We present a state-of-the-art computer vision method for fine-grained fish species classification based on deep learning techniques. A cross-layer pooling algorithm using a pre-trained Convolutional Neural Network as a generalized feature detector is proposed, thus avoiding the need for a large amount of training data. Classification on test data is performed by a SVM on the features computed through the proposed method, resulting in classification accuracy of 94.3% for fish species from typical underwater video imagery captured off the coast of Western Australia. This research advocates that the development of automated classification systems which can identify fish from underwater video imagery is feasible and a cost-effective alternative to manual identification by humans.
Related items
Showing items related by title, author, creator and subject.
-
Marrable, Daniel ; Barker, Kathryn; Tippaya, Sawitchaya; Wyatt, M.; Bainbridge, S.; Stowar, M.; Larke, Jason (2022)Machine-assisted object detection and classification of fish species from Baited Remote Underwater Video Station (BRUVS) surveys using deep learning algorithms presents an opportunity for optimising analysis time and rapid ...
-
Salman, A.; Jalal, A.; Shafait, F.; Mian, A.; Shortis, M.; Seager, J.; Harvey, Euan (2016)Underwater video and digital still cameras are rapidly being adopted by marine scientists and managers as a tool for non-destructively quantifying and measuring the relative abundance, cover and size of marine fauna and ...
-
Shafait, F.; Mian, A.; Ghanem, B.; Culverhouse, P.; Edgington, D.; Cline, D.; Ravenbakhsh, M.; Seager, J.; Harvey, Euan (2013)There is an urgent need for the development of sampling techniques which can provide accurate and precise count, size, and biomass data for fish. This information is essential to support the decision-making processes of ...