Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Hydrogen Storage Stability of Nanoconfined MgH2 upon Cycling

    263823.pdf (1.859Mb)
    Access Status
    Open access
    Authors
    Huen, P.
    Paskevicius, Mark
    Richter, B.
    Ravnsbaek, D.
    Jensen, T.
    Date
    2017
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Huen, P. and Paskevicius, M. and Richter, B. and Ravnsbaek, D. and Jensen, T. 2017. Hydrogen Storage Stability of Nanoconfined MgH2 upon Cycling. Inorganics. 5 (3): 57.
    Source Title
    Inorganics
    DOI
    10.3390/inorganics5030057
    ISSN
    2304-6740
    School
    School of Electrical Engineering, Computing and Mathematical Science (EECMS)
    URI
    http://hdl.handle.net/20.500.11937/65861
    Collection
    • Curtin Research Publications
    Abstract

    It is of utmost importance to optimise and stabilise hydrogen storage capacity during multiple cycles of hydrogen release and uptake to realise a hydrogen-based energy system. Here, the direct solvent-based synthesis of magnesium hydride, MgH2, from dibutyl magnesium, MgBu2, in four different carbon aerogels with different porosities, i.e., pore sizes, 15 < Davg < 26 nm, surface area 800 < SBET < 2100 m2/g, and total pore volume, 1.3 < Vtot < 2.5 cm3/g, is investigated. Three independent infiltrations of MgBu2, each with three individual hydrogenations, are conducted for each scaffold. The volumetric and gravimetric loading of MgH2 is in the range 17 to 20 vol % and 24 to 40 wt %, which is only slightly larger as compared to the first infiltration assigned to the large difference in molar volume of MgH2 and MgBu2. Despite the rigorous infiltration and sample preparation techniques, particular issues are highlighted relating to the presence of unwanted gaseous by-products, Mg/MgH2 containment within the scaffold, and the purity of the carbon aerogel scaffold. The results presented provide a research path for future researchers to improve the nanoconfinement process for hydrogen storage applications

    Related items

    Showing items related by title, author, creator and subject.

    • Hydrogen storage studies of mesoporous and titanium based materials
      Sheppard, Drew A (2008)
      Concerns over green house gas emissions and their climate change effects have lead to a concerted effort into environmental friendly technologies. One such emphasis has been on the implementation of the hydrogen economy. ...
    • Storage of Hydrogen at 303 K in Graphite Slitlike Pores from Grand Canonical Monte Carlo Simulation
      Kowalczyk, Poitr; Tanaka, H.; Holyst, R.; Kaneko, K.; Ohmori, T.; Miyamoto, J. (2005)
      Grand canonical Monte Carlo (GCMC) simulations were used for the modeling of the hydrogen adsorption in idealized graphite slitlike pores. In all simulations, quantum effects were included through the Feynman and Hibbs ...
    • Hydrogen storage studies of nanoparticulate AI and TiMn based compounds
      Murshidi, Julie Andrianny (2012)
      Concerns about the impact that fossil fuels have on the environment and their increasing price to the consumer have led to research being undertaken to evaluate and refine other energy carriers that will be comparable to ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.