Locally Conservative Continuous Galerkin FEM for Pressure Equation in Two-Phase Flow Model in Subsurfaces
Access Status
Authors
Date
2017Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© 2017 Springer Science+Business Media, LLC A typical two-phase model for subsurface flow couples the Darcy equation for pressure and a transport equation for saturation in a nonlinear manner. In this paper, we study a combined method consisting of continuous Galerkin finite element methods (CGFEMs) followed by a post-processing technique for Darcy equation and a nodal centered finite volume method (FVM) with upwind schemes for the saturation transport equation, in which the coupled nonlinear problem is solved in the framework of operator decomposition. The post-processing technique is applied to CGFEM solutions to obtain locally conservative fluxes which ensures accuracy and robustness of the FVM solver for the saturation transport equation. We applied both upwind scheme and upwind scheme with slope limiter for FVM on triangular meshes in order to eliminate the non-physical oscillations. Various numerical examples are presented to demonstrate the performance of the overall methodology.
Related items
Showing items related by title, author, creator and subject.
-
Zomer, E.; Owen, A.; Magliano, D.; Liew, D.; Reid, Christopher (2011)Background: Multivariable risk prediction equations attempt to quantify an individual's cardiovascular risk. Those borne from the Framingham Heart Study remain the most well-established and widely used. In February 2008, ...
-
Chowdhury, E.; Langham, R.; Owen, A.; Krum, H.; Wing, L.; Nelson, M.; Reid, Christopher; Second Australian National Blood Pressure Study Management Committeem (2015)BACKGROUND: The Modifications of Diet in Renal Disease (MDRD) and Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) are 2 equations commonly used to estimate glomerular filtration rate (eGFR). The predictive ...
-
Aruchunan, Elayaraja; Sulaiman, J. (2010)This research purposely brought up to solve complicated equations such as partial differential equations, integral equations, Integro-Differential Equations (IDE), stochastic equations and others. Many physical phenomena ...