Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Transition from oceanic to continental lithosphere subduction in southern Tibet: Evidence from the Late Cretaceous–Early Oligocene (~91–30 Ma) intrusive rocks in the Chanang–Zedong area, southern Gangdese

    Access Status
    Fulltext not available
    Authors
    Jiang, Z.
    Wang, Qiang
    Wyman, D.
    Li, Zheng-Xiang
    Yang, J.
    Shi, X.
    Ma, L.
    Tang, G.
    Gou, G.
    Jia, X.
    Guo, H.
    Date
    2014
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Jiang, Z. and Wang, Q. and Wyman, D. and Li, Z. and Yang, J. and Shi, X. and Ma, L. et al. 2014. Transition from oceanic to continental lithosphere subduction in southern Tibet: Evidence from the Late Cretaceous–Early Oligocene (~91–30 Ma) intrusive rocks in the Chanang–Zedong area, southern Gangdese. Lithos. 196-197: pp. 213-231.
    Source Title
    Lithos
    DOI
    10.1016/j.lithos.2014.03.001
    ISSN
    0024-4937
    School
    Department of Applied Geology
    URI
    http://hdl.handle.net/20.500.11937/6609
    Collection
    • Curtin Research Publications
    Abstract

    Little is known about the detailed processes associated with the transition from oceanic to continental lithosphere subduction in the Gangdese Belt of southern Tibet (GBST). Here, we report zircon U–Pb age, major and trace element and Sr–Nd–Hf isotopic data for Late Cretaceous–Early Oligocene (~ 91–30 Ma) intermediate-acid intrusive rocks in the Chanang–Zedong area immediately north of the Yarlung–Tsangpo suture zone. These rocks represent five magmatic episodes at ~ 91, ~ 77, ~ 62, ~ 48, and ~ 30 Ma, respectively. The 91–48 Ma rocks have slightly lower initial 87Sr/86Sr (0.7037 to 0.7047), and higher εNd(t) (+ 1.8 to + 4.3) and εHf(t) (+ 3.5 to + 14.7) values in comparison with those (0.7057 to 0.7062, − 3.3 to − 2.5 and + 2.2 to + 6.6) of the ~ 30 Ma intrusive rocks. The ~ 91, ~ 62 and ~ 30 Ma rocks are geochemically similar to slab-derived adakites. The ~ 91 Ma Somka adakitic granodiorites were likely derived by partial melting of the subducting Neo-Tethyan oceanic crust with minor oceanic sediments, and the ~ 91 Ma Somka dioritic rocks with a geochemical affinity of adakitic magnesian andesites likely resulted from interactions between adakitic magmas and overlying mantle wedge peridotite. The ~ 77 Ma Luomu diorites were probably generated by partial melting of juvenile basaltic lower crust. The ~ 62 Ma Naika and Zedong adakitic diorites and granodiorites were likely generated mainly by partial melting of thickened juvenile mafic lower crust but the source region of the Zedong adakitic rocks also contained enriched components corresponding to Indian continental crust. The ~ 48 Ma Lamda granites were possibly generated by melting of a juvenile basaltic crust. The younger (~ 30 Ma) Chongmuda adakitic quartz monzonites and minor granodiorites were most probably derived by partial melting of Early Oligocene northward-subducted Indian lower crust beneath the southern Lhasa Block. Taking into account the regional tectonic and magmatic data, we suggest that the Gangdese Belt of southern Tibet (GBST) underwent a tectonodynamic transition from oceanic subduction to continental subduction between 100 and 30 Ma. It evolved through four stages: 100–65 Ma roll-back of subducted Neo-Tethyan oceanic lithosphere; 65–60 Ma initial collision between Indian and Asian continents; 60–40 Ma breakoff of subducted Neo-Tethyan oceanic lithosphere; and ~ 30 Ma northward subduction of the Indian continent.

    Related items

    Showing items related by title, author, creator and subject.

    • Subduction of Indian continent beneath southern Tibet in the latest Eocene (~35Ma): Insights from the Quguosha gabbros in southern Lhasa block
      Ma, L.; Wang, Q.; Li, Zheng-Xiang; Wyman, D.; Yang, J.; Jiang, Z.; Liu, Y.; Gou, G.; Guo, H. (2015)
      Geophysical data illustrate that the Indian continental lithosphere has northward subducted beneath the Tibet Plateau, reaching the Bangong–Nujiang suture in central Tibet. However, when the Indian continental lithosphere ...
    • Origin of postcollisional magmas and formation of porphyry Cu deposits in southern Tibet
      Wang, R.; Weinberg, R.; Collins, Bill; Richards, J.; Zhu, D. (2018)
      The recent discovery of large porphyry copper deposits (PCDs) associated with Miocene (22–12 Ma) granitoid magmas in the eastern section of the Paleocene-Eocene Gangdese magmatic arc in the Himalaya-Tibetan orogenic belt ...
    • Petrogenesis of the Early Eocene adakitic rocks in the Napuri area, southern Lhasa: Partial melting of thickened lower crust during slab break-off and implications for crustal thickening in southern Tibet
      Ma, L.; Wang, B.; Jiang, Z.; Wang, Qiang; Li, Zheng-Xiang; Wyman, D.; Zhao, S.; Yang, J.; Gou, G.; Guo, H. (2014)
      Cenozoic adakitic rocks in the Lhasa block (southern Tibet) have been widely used to trace the lateral extent of crustal thickening. However, their petrogenesis remains controversial. Here, we report geochronological and ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.