Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    The effect of nitrogen-doped mesoporous carbon spheres (NMCSs) on the electrochemical behavior of carbon steel in simulated concrete pore water

    Access Status
    Fulltext not available
    Authors
    Mahmoud, H.
    Tang, J.
    Koleva, D.
    Liu, J.
    Yamauchi, Y.
    Tade, Moses
    Date
    2017
    Type
    Book Chapter
    
    Metadata
    Show full item record
    Citation
    Mahmoud, H. and Tang, J. and Koleva, D. and Liu, J. and Yamauchi, Y. and Tade, M. 2017. The effect of nitrogen-doped mesoporous carbon spheres (NMCSs) on the electrochemical behavior of carbon steel in simulated concrete pore water. In Concrete Durability: Cementitious Materials and Reinforced Concrete Properties, Behavior and Corrosion Resistance, 109-137.
    Source Title
    Concrete Durability: Cementitious Materials and Reinforced Concrete Properties, Behavior and Corrosion Resistance
    DOI
    10.1007/978-3-319-55463-1_6
    ISBN
    9783319554631
    Faculty
    Faculty of Science and Engineering
    URI
    http://hdl.handle.net/20.500.11937/66223
    Collection
    • Curtin Research Publications
    Abstract

    © Springer International Publishing AG 2017. The influence of highly nitrogen-doped mesoporous carbon spheres (NMCSs) (internal pore size of 5.4-16 nm) on the electrochemical response of low carbon steel (St37) in model alkaline solutions of pH 13.9 and 12.8 was studied, using Open Circuit Potential (OCP) monitoring, Electrochemical Impedance Spectroscopy (EIS) and Cyclic Voltammetry (CV). Prior to adding the NMCSs in the relevant solutions, they were characterized in the same model medium by measuring their Zeta-potential, hydrodynamic radius and particle size distribution, using dynamic light scattering (DLS) and transmission electron microscopy (TEM). In alkaline environment of pH 13.9 and 12.8, which simulates the concrete pore water of fresh and mature concrete, the DLS measurements indicated that the hydrodynamic radius of NMCSs particle varied from 296 nm to 183, respectively. According to the Zeta-potential measurements in the same solutions, the NMCSs were slightly positively charged.The addition of 0.016 wt.% of NMCSs to the model medium induced certain variation in the electrochemical response of the tested steel. In alkaline solutions of pH 12.8, the presence of NMCSs in the passive film/solution interface induced a delay in the formation of a stable passive film. On the other hand, in solutions of pH 13.9, the higher corrosion activity on the steel surf ace, enhanced by high pH, was limited by adsorption of NMCSs on the film/substrate interface. In addition competing mechanisms of active state, i.e., enhanced oxidation on the one hand, and particles adsorption on anodic sites and oxidation limitation, on the other hand, was relevant in solution of pH 13.9 inducing larger fluctuations in impedance response and stabilization only towards the end of the testing period. Except steel electrochemical response, the properties of the cement-based bulk matrix were investigated in the presence of the aforementioned additives. The mortar bulk matrix properties were highly affected by NMCSs. The lowest electrical resistivity values were recorded in mortar specimens with mixed-in 0.025 wt.% NMCSs (with respect to dry cement weight). Furthermore, the addition of 0.025 wt.% NMCSs increased the compressive strength when compared to control specimens. The presence of F127 as a dispersing agent for NMCSs was found to be not suitable for reinforced concrete applications, which is in view of the reduced mechanical strength and electrical resistivity of the cement-based bulk matrix. This is in addition to the adverse effect on the formation of electrochemically stable passive layer on steel surface in alkaline medium in its presence.

    Related items

    Showing items related by title, author, creator and subject.

    • Investigation of the impact of nitrate injection to control sourcing problem in oil reservoir : benefit and side effects on steel materials
      Halim, Amalia Yunita (2011)
      The successful control of reservoir souring by nitrate injection has been well documented in the literature. Recent interest has centred on how nitrate application can increase the corrosion risk in pipelines and metal ...
    • Magnetite and its galvanic effect on the corrosion of carbon steel under carbon dioxide environments
      Chan, Emilyn Wai Lyn (2011)
      Carbon dioxide corrosion, which can cause premature failure of oil and gas pipelines, is an imperative health, safety and environmental issue in the oil and gas industry. Extensive studies have been conducted to understand ...
    • Studies of fly ash-based geopolymer concrete
      Hardjito, Djwantoro (2005)
      The use of Portland cement in concrete construction is under critical review due to high amount of carbon dioxide gas released to the atmosphere during the production of cement. In recent years, attempts to increase the ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.