Developing an evacuation evaluation model for offshore oil and gas platforms using BIM and agent-based model
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Funding and Sponsorship
Collection
Abstract
© 2018 Accidents on offshore oil and gas platforms (OOGPs) usually cause serious fatalities and financial losses considering the demanding environment where such platforms are located and the complicated topsides structure that the platforms have. Conducting evacuation planning on OOGPs is challenging. Computational tools are considered as a good way to plan evacuation by emergency simulation. However, the complex structure of OOGPs and various evacuation behaviors can weaken the advantages of computational simulation. Therefore, this study develops a simulation model for OOGPs to evaluate different evacuation plans to improve evacuation performance by integrating building information modeling (BIM) technology and agent-based model (ABM). The developed model consists of four parts: evacuation model input, simulation environment modeling, agent definition, and simulation and comparison. Necessary platform information is extracted from BIM and then used to model the simulation environment by integrating matrix model and network model. In addition to essential attributes, environment sensing and dynamic escape path planning functions are developed and assigned to agents in order to improve simulation performance. Total evacuation time for all agents on an offshore platform is used to evaluate the evacuation performance of each simulation. An example OOGP BIM topsides with different emergency scenarios is used to illustrate the developed evacuation evaluation model. The results show that the developed model can accurately simulate evacuation and improve evacuation performance on OOGPs. The developed model is also applicable to other industries such as the architecture, engineering, and construction industry, where there is an increasing demand for evacuation planning and simulation.
Related items
Showing items related by title, author, creator and subject.
-
Wang, C.; Wood, Lincoln; Li, H.; Aw, Z.; Keshavarzsaleh, A. (2018)© 2018 Chen Wang et al. Every minute counts in an event of fire evacuation where evacuees need to make immediate routing decisions in a condition of low visibility, low environmental familiarity, and high anxiety. However, ...
-
Goncalves, J.; Krishna, Aneesh (2015)The Belief-Desire-Intention (BDI) agent model is a highly favoured agent development model known for its distinct abstraction between components, conceptual adaptability and flexibility in determining its actions. This ...
-
Chi, Hung-Lin; Kang, S.; Hsieh, S.; Wang, Xiangyu (2014)The objective of this research is to develop, optimize and evaluate an approach for automatically generating rigging path guidance in order to provide sufficient assistance on the user interface of tele-operated crane. ...