Atomically Dispersed Transition Metals on Carbon Nanotubes with UltraHigh Loading for Selective Electrochemical Carbon Dioxide Reduction
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Funding and Sponsorship
Collection
Abstract
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Single-atom catalysts (SACs) are the smallest entities for catalytic reactions with projected high atomic efficiency, superior activity, and selectivity; however, practical applications of SACs suffer from a very low metal loading of 1-2 wt%. Here, a class of SACs based on atomically dispersed transition metals on nitrogen-doped carbon nanotubes (MSA-N-CNTs, where M = Ni, Co, NiCo, CoFe, and NiPt) is synthesized with an extraordinarily high metal loading, e.g., 20 wt% in the case of NiSA-N-CNTs, using a new multistep pyrolysis process. Among these materials, NiSA-N-CNTs show an excellent selectivity and activity for the electrochemical reduction of CO 2 to CO, achieving a turnover frequency (TOF) of 11.7 s -1 at -0.55 V (vs reversible hydrogen electrode (RHE)), two orders of magnitude higher than Ni nanoparticles supported on CNTs.
Related items
Showing items related by title, author, creator and subject.
-
Zhao, S.; Cheng, Yi ; Veder, Jean-Pierre ; Johannessen, B.; Saunders, M.; Zhang, L.; Liu, C.; Chisholm, M.F.; De Marco, Roland ; Liu, Jian ; Yang, S.Z.; Jiang, San Ping (2018)The practical application of single atom catalysts (SACs) is constrained by the low achievable loading of single metal atoms. Here, nickel SACs stabilized on a nitrogen-doped carbon nanotube structure (NiSA-N-CNT) with ...
-
Adjizian, J.; De Marco, Roland; Suarez-Martinez, Irene; El Mel, A.; Synders, R.; Gengler, R.; Rudolf, P.; Ke, X.; Van Tendeloo, G.; Bittencourt, C.; Ewels, C. (2013)Pristine and oxygen plasma functionalised carbon nanotubes (CNTs) were studied after the evaporation of Pt and Pd atoms. High resolution transmission electron microscopy shows the formation of metal nanoparticles at the ...
-
Zhang, J.; Lu, S.; Xiang, Y.; Shen, P.; Liu, J.; Jiang, San Ping (2015)Carbon nanotubes (CNTs) are well known electrocatalyst supports due to their high electrical conductivity, structural stability, and high surface area. Here, we demonstrate that the number of inner tubes or walls of CNTs ...