Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Co@C/CoOx coupled with N-doped layer-structured carbons for excellent CO2 capture and oxygen reduction reaction

    Access Status
    Fulltext not available
    Authors
    Zhang, H.
    Tian, W.
    Qian, Z.
    Ouyang, T.
    Saunders, M.
    Qin, J.
    Wang, Shaobin
    Tade, Moses
    Sun, Hongqi
    Date
    2018
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Zhang, H. and Tian, W. and Qian, Z. and Ouyang, T. and Saunders, M. and Qin, J. and Wang, S. et al. 2018. Co@C/CoOx coupled with N-doped layer-structured carbons for excellent CO2 capture and oxygen reduction reaction. Carbon. 133: pp. 306-315.
    Source Title
    Carbon
    DOI
    10.1016/j.carbon.2018.03.044
    ISSN
    0008-6223
    School
    WASM: Minerals, Energy and Chemical Engineering (WASM-MECE)
    Funding and Sponsorship
    http://purl.org/au-research/grants/arc/DP150103026
    URI
    http://hdl.handle.net/20.500.11937/66636
    Collection
    • Curtin Research Publications
    Abstract

    Current environmental and energy issues urge the advance of stable and cost-effective porous nanostructures for highly efficient electrochemical energy conversion/storage, and gas adsorption/separation. Herein, we report a one-pot, scalable pyrolysis process for fabrication of hierarchically layer-structured porous carbons with nitrogen doping and cobalt modification (Co-N-PCs) for efficient high-pressure CO2 gas adsorption and oxygen reduction reaction (ORR). Co-N-PCs possess large specific surface areas and abundant layered macropores containing micropores and narrow mesopores, coupled with core-shell Co@C/CoOx structure. Co-N-PC 800 (synthesized at 800 °C) shows a high CO2 capture capability of 18.5 mmol g−1 at 10 bar (0 °C) and an outstanding catalytic activity for ORR. Density functional theory (DFT) calculations reveal that the cobalt cores inside graphene layers powerfully promote electron transfer from Co to surrounding C atoms, which work together with doped N to create superior catalytically active sites in the graphene shells. In addition, the negative charge states of C induced in N-doped Co@C structure contribute to the capture of CO2.

    Related items

    Showing items related by title, author, creator and subject.

    • Solution-processed lithium-doped ZnO electron transport layer for efficient triple cation (Rb, MA, FA) perovskite solar cells
      Mahmud, M.; Elumalai, Naveen Kumar; Upama, M.; Wang, D.; Soufiani, A.; Wright, M.; Xu, C.; Haque, F.; Uddin, A. (2017)
      The current work reports the lithium (Li) doping of a low-temperature processed zinc oxide (ZnO) electron transport layer (ETL) for highly efficient, triple-cation-based MA0.57FA0.38Rb0.05PbI3 (MA: methylammonium, FA: ...
    • Organic solar cells with near 100% efficiency retention after initial burn-in loss and photo-degradation
      Upama, M.; Elumalai, Naveen Kumar; Mahmud, M.; Sun, H.; Wang, D.; Chan, K.; Wright, M.; Xu, C.; Uddin, A. (2017)
      In this article, we attempt to demonstrate a way of tackling one of the biggest challenges in the path of commercialization of organic solar cells, the initial photo-degradation of the cells known as “burn-in”. The “burn-in” ...
    • The development of a rigorous nanocharacterization scheme for electrochemical systems
      Veder, Jean-Pierre M. (2010)
      This thesis reports on a methodology for the nanocharacterization of complex electrochemical systems. A series of powerful techniques have been adapted and applied to studies of two scientifically important electrochemical ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.