Fire as a Potent Mutagenic Agent Among Plants
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Many of the earth's species-rich floras are fire-prone and current research is showing a key role for fire in their evolution and diversification. However the mechanisms by which fire might direct evolution at the cellular level are unknown. Mutagenesis is the foundation on which speciation is based and our literature survey shows that burning biomass may be a major source of potent mutagens in the form of heat, combustion products and recycled metals and radionuclides. Even mild heat may cause dysfunctional cell division and induce diploid gametes and genome duplication that are considered one of the cornerstones of speciation among flowering plants. Plant cell walls that undergo pyrolysis yield particulates and gases with strong mutagenic properties, among which polycyclic aromatic hydrocarbons, such as benzo[a]pyrene, are notable. Plants concentrate essential, nonmetabolic, and radioactive metal/metalloid ions from the soil and air; they are fractionated even further on combustion and may also have mutagenic effects on the chromosomes of stored seeds and regenerating plants. Morphological consequences may be profound, even mimicking traits present among other species in the lineage, and hold promise that fire-related mutagenesis may provide the missing mechanistic explanation for the close historical association between wildfire and speciation among seed plants.
Related items
Showing items related by title, author, creator and subject.
-
Lamont, Byron; He, Tianhua; Yan, Z. (2018)Fire has shaped the evolution of many plant traits in fire-prone environments: fire-resistant tissues with heat-insulated meristems, post-fire resprouting or fire-killed but regenerating from stored seeds, fire-stimulated ...
-
Lamont, Byron; He, Tianhua (2017)Fire as a major evolutionary force has been disputed because it is considered to lack supporting evidence. If a trait has evolved in response to selection by fire then the environment of the plant must have been fire-prone ...
-
Lamont, Byron; He, Tianhua; Yan, Z. (2019)© 2018 Elsevier GmbH There is mounting evidence that much of the world's vegetation has been fire-prone since the Upper Cretaceous, taking precedence over Cenozoic drought as a key agent of selection in the evolution of ...