A study on the effect of nano silica on compressive strength of high volume fly ash mortar and concrete
Access Status
Authors
Date
2014Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
This paper presents the effect of nano silica (NS) on the compressive strength of mortars and concretes containing different high volume fly ash (HVFA) contents ranging from 40% to 70% (by weight) as partial replacement of cement. The compressive strength of mortars is measured at 7 and 28 days and that for concretes is measured at 3, 7, 28, 56 and 90 days. The effects of NS in microstructure development and pozzolanic reaction of pastes containing above HVFA contents are also studied through backscattered electron (BSE) image and X-ray diffraction (XRD) analysis. Results show that among different NS contents ranging from 1% to 6%, cement mortar containing 2% NS exhibited highest 7 and 28 days compressive strength. This NS content (2%) is then added to the HVFA mortars and concretes and the results show that the addition of 2% NS improved the early age (7 days) compressive strength of mortars containing 40% and 50% fly ash by 5% and 7%, respectively. However, this improvement is not observed at high fly ash contents beyond 50%. On the other hand, all HVFA mortars exhibited improvement in 28 days compressive strength due to addition of 2% NS and the most significant improvement is noticed in mortars containing more than 50% fly ash. In HVFA concretes, the improvement of early age (3 days) compressive strength is also noticed due to addition of 2% NS. The BSE and XRD analysis results also support the above findings.
Related items
Showing items related by title, author, creator and subject.
-
Shaikh, Faiz; Supit, S. (2014)The effects of CaCO3 nanoparticles on compressive strength and durability properties of high volume fly ash (HVFA) concretes containing 40% and 60% fly ash as partial replacement of cement are evaluated in this study. The ...
-
Shaikh, Faiz; Supit (2015)The effects of calcium carbonate (CaCO3) nanoparticles on the mechanical properties and durability of high-volume fly ash (HVFA) concretes containing 40 and 60 wt% fly ash as the partial replacement of cement are evaluated ...
-
Shaikh, Faiz; Shafaei, Y.; Sarker, Prabir (2016)This paper presents the effects of nano silica (NS), micro silica (MS) and combined NS and MS on bond behaviour of steel and polypropylene (PP) fibres in high volume fly ash (HVFA) mortar. Three types of bend configuration ...