Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    A study on the effect of nano silica on compressive strength of high volume fly ash mortar and concrete

    Access Status
    Fulltext not available
    Authors
    Shaikh, Faiz
    Supit, S.
    Sarker, Prabir
    Date
    2014
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Shaikh, F.U.A. and Supit, S.W.M. and Sarker, P.K. 2014. A study on the effect of nano silica on compressive strength of high volume fly ash mortar and concrete. Materials and Design. 60: pp. 433-442.
    Source Title
    Materials and Design
    DOI
    10.1016/j.matdes.2014.04.025
    ISSN
    0264-1275
    URI
    http://hdl.handle.net/20.500.11937/6671
    Collection
    • Curtin Research Publications
    Abstract

    This paper presents the effect of nano silica (NS) on the compressive strength of mortars and concretes containing different high volume fly ash (HVFA) contents ranging from 40% to 70% (by weight) as partial replacement of cement. The compressive strength of mortars is measured at 7 and 28 days and that for concretes is measured at 3, 7, 28, 56 and 90 days. The effects of NS in microstructure development and pozzolanic reaction of pastes containing above HVFA contents are also studied through backscattered electron (BSE) image and X-ray diffraction (XRD) analysis. Results show that among different NS contents ranging from 1% to 6%, cement mortar containing 2% NS exhibited highest 7 and 28 days compressive strength. This NS content (2%) is then added to the HVFA mortars and concretes and the results show that the addition of 2% NS improved the early age (7 days) compressive strength of mortars containing 40% and 50% fly ash by 5% and 7%, respectively. However, this improvement is not observed at high fly ash contents beyond 50%. On the other hand, all HVFA mortars exhibited improvement in 28 days compressive strength due to addition of 2% NS and the most significant improvement is noticed in mortars containing more than 50% fly ash. In HVFA concretes, the improvement of early age (3 days) compressive strength is also noticed due to addition of 2% NS. The BSE and XRD analysis results also support the above findings.

    Related items

    Showing items related by title, author, creator and subject.

    • Mechanical and durability properties of high volume fly ash (HVFA) concrete containing calcium carbonate (CaCO3) nanoparticles
      Shaikh, Faiz; Supit, S. (2014)
      The effects of CaCO3 nanoparticles on compressive strength and durability properties of high volume fly ash (HVFA) concretes containing 40% and 60% fly ash as partial replacement of cement are evaluated in this study. The ...
    • Mechanical properties and durability of high volume fly ash concrete reinforced with calcium carbonate nano particles
      Shaikh, Faiz; Supit (2015)
      The effects of calcium carbonate (CaCO3) nanoparticles on the mechanical properties and durability of high-volume fly ash (HVFA) concretes containing 40 and 60 wt% fly ash as the partial replacement of cement are evaluated ...
    • Effect of nano and micro-silica on bond behaviour of steel and polypropylene fibres in high volume fly ash mortar
      Shaikh, Faiz; Shafaei, Y.; Sarker, Prabir (2016)
      This paper presents the effects of nano silica (NS), micro silica (MS) and combined NS and MS on bond behaviour of steel and polypropylene (PP) fibres in high volume fly ash (HVFA) mortar. Three types of bend configuration ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.