Removal of arsenic from gold cyanidation process waters by use of cerium-based magnetic adsorbents
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Cerium-based magnetic adsorbents (referred to as Fe3O4@CeO2/(OH)x) were synthesised via a simple chemical precipitation method. Scanning electron microscopy – energy dispersive spectrometry (SEM-EDS) showed that the synthesised particles had an average size of approximately 300 nm. The particles consisted of crystalline magnetite cores coated with poorly ordered cerium oxide as identified by their X-ray diffraction (XRD) patterns. A saturation magnetization of approximately 40 emu/g was determined by a superconducting quantum interference device (SQUID), making Fe3O4@CeO2/(OH)x easy to separate magnetically. The Brunauer-Emmett-Teller (BET) specific surface area of the final product was approximately 91.38 ± 1.47 m2/g. Systematic adsorption tests showed that both As(III) and As(V) could be rapidly removed by Fe3O4@CeO2/(OH)x with the Langmuir maximum adsorption capacities of 79.1 mg/g for As(III) and 25.5 mg/g for As(V) at a pH value of 9, in arsenic-only solutions. A simultaneous adsorption of 51.2 mg/g for As(III) and As(V) was obtained in simulated process waters from gold cyanidation. 1.0 mol/L NaOH solution was used as a regenerant to investigate the regeneration and reuse of Fe3O4@CeO2/(OH)x, and over 60% of its initial adsorption capacity was retained after five consecutive adsorption–desorption cycles. Therefore, the readily synthesised Fe3O4@CeO2/(OH)x microparticles, with their high degree of magnetic separability and exceptional arsenic adsorption capacity, can be considered a promising arsenic scavenger in certain industrial applications.
Related items
Showing items related by title, author, creator and subject.
-
Feng, C.; Aldrich, C.; Eksteen, J.; Arrigan, Damien (2017)© 2017 Canadian Institute of Mining, Metallurgy and Petroleum Arsenic adversely affects gold mining operations by interfering with the extraction of gold, as well as posing a significant health and environmental hazard. ...
-
Feng, C.; Aldrich, C.; Eksteen, Jacques; Arrigan, Damien (2017)In this paper, the use of titania functionalised magnetic nanosorbents for rapid removal of arsenic from the alkaline process waters of gold cyanide leaching systems is considered. The Fe3O4@SiO2@TiO2 nanosorbent synthesised ...
-
Sen, T.; Nomura, S.; Nishioka, H.; Sen, Tushar (2017)A novel magnetic adsorbent was synthesized by solvothermal method for the removal of arsenic from aqueous phase by adsorption. This adsorbent comprises bamboo charcoal loaded with magnetite and humboldtine particles, and ...