Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    One-step synthesis of flour-derived functional nanocarbons with hierarchical pores for versatile environmental applications

    Access Status
    Fulltext not available
    Authors
    Tian, W.
    Zhang, H.
    Sun, Hongqi
    Tade, Moses
    Wang, Shaobin
    Date
    2018
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Tian, W. and Zhang, H. and Sun, H. and Tade, M. and Wang, S. 2018. One-step synthesis of flour-derived functional nanocarbons with hierarchical pores for versatile environmental applications. Chemical Engineering Journal. 347: pp. 432-439.
    Source Title
    Chemical Engineering Journal
    DOI
    10.1016/j.cej.2018.04.139
    ISSN
    1385-8947
    School
    WASM: Minerals, Energy and Chemical Engineering (WASM-MECE)
    Funding and Sponsorship
    http://purl.org/au-research/grants/arc/DP150103026
    URI
    http://hdl.handle.net/20.500.11937/66995
    Collection
    • Curtin Research Publications
    Abstract

    In this study, we develops a one-step and scalable approach to synthesize functional carbons with a tuneable and hierarchically porous structure as well as tailored surface chemistry for environmental applications in CO 2 adsorption and carbocatalysis to remove emerging water contaminants. By pyrolyzing a mixture of wheat flour and NaHCO 3 /Na 2 CO 3 /K 2 CO 3 at 700 °C, honeycomb structured carbons (700-PC) with dominant micropores can be formed and exhibit an excellent CO 2 storage capacity of 6.8 mmol g -1 at 0 °C and ambient pressure. By including dicyandiamide in the precursors, coralloid carbon skeletons in a micro- and meso-porous texture are selectively formed in the N-doped hierarchical porous carbons (N-PCs). 800-N-PC (N-PCs prepared at 800 °C) with a high surface area of 3041 m 2 g -1 shows an enhanced capacity of 19.4 mmol g -1 at 0 °C, 10 bar. For water remediation, 800-N-PC exhibits the most efficient degradation of p-hydroxybenzoic acid (HBA) by advanced oxidation processes (AOPs), with a high reaction rate constant of 0.39 min -1 at 25 °C. In addition, 800-N-PC shows selective adsorption of HBA in a mixed solution of HBA and phenol, while both of them can be effectively degraded by the AOPs. The mechanism of adsorption and catalysis of the newly developed porous carbon is discussed.

    Related items

    Showing items related by title, author, creator and subject.

    • Synthesis and evaluation of porous composite hydrogels for tissue engineering applications
      Li, Chao (2012)
      The purpose of this dissertation was to synthesize and evaluate porous poly(2- hydroxyethyl methacrylate) (PHEMA) and PHEMA composite hydrogels containing various concentrations of titanium dioxide (TiO2) nanoparticles, ...
    • Magnetite and its galvanic effect on the corrosion of carbon steel under carbon dioxide environments
      Chan, Emilyn Wai Lyn (2011)
      Carbon dioxide corrosion, which can cause premature failure of oil and gas pipelines, is an imperative health, safety and environmental issue in the oil and gas industry. Extensive studies have been conducted to understand ...
    • Molten salt synthesis of nitrogen-doped carbon with hierarchical pore structures for use as high-performance electrodes in supercapacitors
      Deng, X.; Zhao, B.; Zhu, L.; Shao, Zongping (2015)
      Porous carbon materials have received considerable attention recently, particularly in the energy field. To meet the increasing demands for electrochemical energy conversion and storage-related applications, the development ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.