A new approach in petrophysical rock typing
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Petrophysical rock typing in reservoir characterization is an important input for successful drilling, production, injection, reservoir studies and simulation. In this study petrophysical rock typing is divided into two major categories: 1) a petrophysical static rock type (PSRT): a collection of rocks having the same primary drainage capillary pressure curves or unique water saturation for a given height above the free water level, 2) a petrophysical dynamic rock type (PDRT): a set of rocks with a similar fluid flow behavior. It was shown that static and dynamic rock types do not necessarily overlap or share petrophysical properties, regardless of wettability. In addition, a new index is developed to define PDRTs via the Kozeny-Carman equation and Darcy's law. We also proposed a different index for delineation of PSRTs by combining the Young–Laplace capillary pressure expression and the Kozeny-Carman equation. These new indices were compared with the existing theoretical and empirical indices. Results showed that our indices are representatives of previously developed models which were also tested with mercury injection capillary pressure, water-oil primary drainage capillary pressure, and water-oil relative permeability data on core plugs from a highly heterogeneous carbonate reservoir in an Iranian oil field. This study enabled us to modify the conventional J-function to enhance its capability of normalizing capillary pr essure data universally.
Related items
Showing items related by title, author, creator and subject.
-
Mirzaei-Paiaman, A.; Sabbagh, F.; Ostadhassan, M.; Shafiei, A.; Rezaee, M. Reza ; Saboorian-Jooybari, H.; Chen, Z. (2019)Despite the differences between petrophysical static (PSRTs) and dynamic rock types (PDRTs), previous indices were unable to distinguish between them. FZI-Star (FZI*) and PSRTI are recently developed petrophysical dynamic ...
-
Vialle, Stephanie; Dvorkin, J.; Mavko, G. (2013)We studied the heterogeneity of natural rocks with respect to their pore-size distribution, obtained from mercury-intrusion capillary pressure (MICP) tests, at a scale about one-fifth of the standard plug size (2.5 cm). ...
-
Allpike, Bradley (2008)Natural organic matter (NOM), ubiquitous in natural water sources, is generated by biogeochemical processes in both the water body and in the surrounding watershed, as well as from the contribution of organic compounds ...