Semi-automated porosity identification from thin section images using image analysis and intelligent discriminant classifiers
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
School
Collection
Abstract
Identification of different types of porosity within a reservoir rock is a functional parameter for reservoir characterization since various pore types play different roles in fluid transport and also, the pore spaces determine the fluid storage capacity of the reservoir. The present paper introduces a model for semi-automatic identification of porosity types within thin section images. To get this goal, a pattern recognition algorithm is followed. Firstly, six geometrical shape parameters of sixteen largest pores of each image are extracted using image analysis techniques. The extracted parameters and their corresponding pore types of 294 pores are used for training two intelligent discriminant classifiers, namely linear and quadratic discriminant analysis. The trained classifiers take the geometrical features of the pores to identify the type and percentage of five types of porosity, including interparticle, intraparticle, oomoldic, biomoldic, and vuggy in each image. The accuracy of classifiers is determined from two standpoints. Firstly, the predicted and measured percentages of each type of porosity are compared with each other. The results indicate reliable performance for predicting percentage of each type of porosity. In the second step, the precisions of classifiers for categorizing the pore spaces are analyzed. The classifiers also took a high acceptance score when used for individual recognition of pore spaces. The proposed methodology is a further promising application for petroleum geologists allowing statistical study of pore types in a rapid and accurate way.
Related items
Showing items related by title, author, creator and subject.
-
Al Hinai, Adnan Saif Hamed; Rezaee, M. Reza (2015)Assessing shale formations is a major challenge in the oil and gas industry. The complexities are mainly due to the ultra-low permeability, the presence of a high percentage of clay, and the heterogeneity of the formation. ...
-
Bastos de Paula, Osni (2011)This thesis is a multi-scale study of carbonate rocks, from the nanoscale and digital rock investigations to the imaging studies of carbonate reservoir analogues. The essential links between these extremes are the carbonate ...
-
Ben-Awuah, Joel; Andriamihaja, S.; Padmanabhan, E. (2016)It is well-known that prediction of petrophysical parameters which is closely linked to pore system complexities is always challenging especially for carbonate rock study. This paper describes and characterizes the pore ...