A semi-automated approach to generate 4D/5D BIM models for evaluating different offshore oil and gas platform decommissioning options
Access Status
Authors
Date
2017Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Funding and Sponsorship
Collection
Abstract
Background: Offshore oil and gas platforms generally have a lifetime of 30 to 40Â years, and platform decommissioning is a major issue because many of the existing offshore oil and gas platforms are reaching the end of their service life. There are many possible options for decommissioning offshore oil and gas platforms, and each decommissioning option can be implemented using different methods and technologies. Therefore, it is necessary to have a clear understanding and in-depth evaluation of each decommissioning option before commencing platform decommissioning. 4D and 5D building information modeling (BIM) has been commonly used in the building industry to analyze constructability and to evaluate different construction or demolition plans. However, application of BIM in the oil and gas industry, especially for the platform decommissioning process, is still limited. Methods: This paper suggests and demonstrates the application of 4D and 5D BIM technology to simulate various methodologies to realize various selected offshore platform decommissioning options, thereby visualizing and evaluating different options, considering both the time and resources required for decommissioning process. One hundred and seventy-seven offshore platform decommissioning options are summarized in this paper. A new approach to create multiple 4D/5D BIM models in a semi-automated manner for evaluating various scenario options of OOGP decommissioning was proposed to reduce the model creation time as current way of 4D/5D BIM model creation for each OOGP decommissioning option is time consuming. Results: In the proposed approach, an OOGP BIM model relationship database that contains possible 4D/5D BIM model relationships (i.e. schedules for different decommissioning methods) for different parts of an OOGP was generated. Different OOGP decommissioning options can be simulated and visualized with 4D/5D BIM models created by automatically matching schedules, resources, cost information and 3D BIM models. This paper also presents an illustrative example of the proposed approach, which simulates and evaluates two decommissioning options of a fixed jacket platform, namely Rig-to-Reef and Removal-to-Shore. As compared to the traditional approach of 4D/5D BIM model generation, the proposed semi-automated approach reduces the model generation time by 58.8% in the illustrative example. Conclusions: The proposed approach of semi-automated 4D/5D BIM model creation can help understand the implication of different decommissioning options as well as applied methods, detecting potential lifting clashes, and reducing 4D/5D BIM model creation time, leading to better planning and execution for the decommissioning of offshore oil and gas platforms. In addition, with the proposed semi-automated approach, the 4D/5D BIM model can be generated in a more efficient manner.
Related items
Showing items related by title, author, creator and subject.
-
Tan, Y.; Li, H.X.; Cheng, J.C.P.; Wang, J.; Jiang, B.; Song, Yongze ; Wang, Xiangyu (2021)© 2020 Elsevier Inc. Platform decommissioning decision making is a major issue as many of the existing offshore oil and gas platforms (OOGPs) require to be decommissioned. The cost and environmental impact are two main ...
-
Tan, Y.; Song, Y.; Liu, Xin; Wang, X.; Cheng, J. (2016)© 2017 Elsevier B.V.Offshore oil and gas platforms (OOGPs) usually have a lifetime of 30-40. years. An increasing number of OOGPs across the world will be retired and decommissioned in the coming decade. Therefore, a safe ...
-
Sampson, Demetrios; Karampiperis, P. (2011)Several efforts have been reported in literature aiming to support the Adaptation Model (AM) design in Adaptive Educational Hypermedia Systems (AEHS) with either guidance for the direct definition of adaptation rules or ...