PyFly: A fast, portable aerodynamics simulator
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
We present a fast, user-friendly implementation of a potential flow solver based on the unsteady vortex lattice method (UVLM), namely PyFly. UVLM computes the aerodynamic loads applied on lifting surfaces while capturing the unsteady effects such as the added mass forces, the growth of bound circulation, and the wake while assuming that the flow separation location is known a priori. This method is based on discretizing the body surface into a lattice of vortex rings and relies on the Biot–Savart law to construct the velocity field at every point in the simulated domain. We introduce the pointwise approximation approach to simulate the interactions of the far-field vortices to overcome the computational burden associated with the classical implementation of UVLM. The computational framework uses the Python programming language to provide an easy to handle user interface while the computational kernels are written in Fortran. The mixed language approach enables high performance regarding solution time and great flexibility concerning easiness of code adaptation to different system configurations and applications. The computational tool predicts the unsteady aerodynamic behavior of multiple moving bodies (e.g., flapping wings, rotating blades, suspension bridges) subject to incoming air. The aerodynamic simulator can also deal with enclosure effects, multi-body interactions, and B-spline representation of body shapes. We simulate different aerodynamic problems to illustrate the usefulness and effectiveness of PyFly.
Related items
Showing items related by title, author, creator and subject.
-
Golovanevskiy, Vladimir; Chmovzh, V.; Girka, Y. (2012)This study is concerned with the optimal model configuration for aerodynamic modeling of long open cargo railway trains. Frontal air drag of several train configurations was studied using numerical modeling and physical ...
-
Roy, Sukanta; Saha, U. (2013)Rapid depletion rate of fossil fuels with an increasing energy demand and their high emission are imposing the evolution activities in the arena of renewable energy. To meet the future demands of renewable energy sources, ...
-
Ghommem, M.; Calo, Victor (2014)The current understanding of the aerodynamics of birds in formation flights is mostly based on field observations. The interpretation of these observations is usually made using simplified aerodynamic models. Here, we ...