Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Investigation on Ash Slagging Characteristics During Combustion of Biomass Pellets and Effect of Additives

    Access Status
    Fulltext not available
    Authors
    Wang, L.
    Skjevrak, G.
    Skreiberg, Ø.
    Wu, Hongwei
    Nielsen, H.
    Hustad, J.
    Date
    2018
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Wang, L. and Skjevrak, G. and Skreiberg, Ø. and Wu, H. and Nielsen, H. and Hustad, J. 2018. Investigation on Ash Slagging Characteristics During Combustion of Biomass Pellets and Effect of Additives. Energy & Fuels. 32: pp. 4442-4452.
    Source Title
    Energy & Fuels
    DOI
    10.1021/acs.energyfuels.7b03173
    School
    WASM: Minerals, Energy and Chemical Engineering (WASM-MECE)
    URI
    http://hdl.handle.net/20.500.11937/67237
    Collection
    • Curtin Research Publications
    Abstract

    This study reports a systematic investigation into ash slagging behavior during combustion of barley straw and barley husk pellets with or without additives in a residential pellet burner. The slagging tendencies of the pellets were evaluated based on the amount, chemistry, mineralogy, and morphology of inlet ash formed as slag and sintering degrees of residual ash. The barley straw and husk pellets showed high slagging tendencies with 39 and 54 wt % ingoing ash formed as slag. Analyses using X-ray fluorescence and scanning electron microcopy combined with energy-dispersive X-ray spectroscopy revealed high concentrations of K, Si, and Ca but a minor amount of P in barley straw slag. The slag mainly contained melted potassium silicates directly observed by X-ray diffraction. For the barley husk, high ash slagging tendency was observed and mainly attributed to the formation and melting of potassium phosphates, potassium silicates, and complex mixtures of the two mineral phases. Addition of marble sludge completely eliminated ash slagging during combustion of barley straw and husk pellets because it led to the formation of high temperature melting calcium potassium phosphates, calcium rich potassium silicates, and oxides. Addition of calcium lignosulfonate showed a less pronounced ability to mitigate ash slagging issues during pellet combustion, although it promoted the formation of calcium-rich silicates and phosphates (both with high-melting points) in barley straw and husk ash, respectively. This process was accompanied by considerable reduction in the amount and sintering degree of the formed barley straw and husk slag.

    Related items

    Showing items related by title, author, creator and subject.

    • Treatment of oily and dye wastewater with modified barley straw
      Che Ibrahim, Shariff (2010)
      Barley straw, an agricultural byproduct, was identified as a potential adsorbent material for wastewater treatment as it offers various advantages such as abundant availability at no or very low cost, little processing ...
    • Correlating the effects of ash elements and their association in the fuel matrix with the ash release during pulverized fuel combustion
      Shah, Kalpit; Cieplik, M.; Betrand, C.; van de Kamp, W.; Vuthaluru, Hari (2010)
      During pulverized fuel combustion, inorganic elements such as alkalis, sulfur, chlorine, calcium and magnesium, as well as a range of minor elements are partly released into the gas phase. These gas-borne species can ...
    • Ash formation mechanisms during combustion/co-firing of biomass and coal
      Shah, Kalpit Vrajeshkumar (2010)
      In case of PF firing, solid fuels such as coal and biomass undergo various chemical and physical transformations (devolatilization, char oxidation, fragmentation and gas to particle conversion followed by nucleation, ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.