Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Validation of GRACE based groundwater storage anomaly using in-situ groundwater level measurements in India

    Access Status
    Fulltext not available
    Authors
    Bhanja, S.
    Mukherjee, Abhijit
    Saha, D.
    Velicogna, I.
    Famiglietti, J.
    Date
    2016
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Bhanja, S. and Mukherjee, A. and Saha, D. and Velicogna, I. and Famiglietti, J. 2016. Validation of GRACE based groundwater storage anomaly using in-situ groundwater level measurements in India. Journal of Hydrology. 543: pp. 729-738.
    Source Title
    Journal of Hydrology
    DOI
    10.1016/j.jhydrol.2016.10.042
    ISSN
    0022-1694
    URI
    http://hdl.handle.net/20.500.11937/67348
    Collection
    • Curtin Research Publications
    Abstract

    In this study, we tried to validate groundwater storage (GWS) anomaly obtained from a combination of GRACE and land-surface model based estimates, for the first time, with GWS anomaly obtained from a dense network of in-situ groundwater observation wells within 12 major river basins in India. We used seasonal data from >15,000 groundwater observation wells between 2005 and 2013, distributed all over the country. Two recently released GRACE products, RL05 spherical harmonics (SH) and RL05 mascon (MS) products are used for comparison with in-situ data. To our knowledge, this is the first study of comparing the performance of two independent GRACE products at a sub-continental scale. Also for the first time, we have created a high resolution (0.10 × 0.10) map of specific yield for the entire country that was used for calculating GWS. Observed GWS anomalies have been computed using water level anomalies and specific yield information for the locale of individual observation wells that are up-scaled to basin-scale in order to compare with GRACE-based estimates. In general GRACE-based estimates match well (on the basis of the statistical analyses performed in the study) with observed estimates in most of the river basins. On comparing with observed GWS anomaly, GRACE-SH estimates match well in terms of RMSE, while GRACE-MS estimates show better association in terms of correlation, while the output of skewness, kurtosis, coefficient of variation (CV) and scatter analyses remain inconclusive for inter-comparison between two GRACE estimates. We used a non-parametric trend estimation approach, the Hodrick-Prescott (HP) filter, to further assess the performance of the two GRACE estimates. GRACE-MS estimates clearly outperform GRACE-SH estimates for reproducing observed GWS anomaly trends with significantly (>95% confidence level) strong association in 10 out of 12 basins for GRACE-MS estimates, on the other hand, GRACE-SH estimates show significantly (>95% confidence level) strong association in 6 out of 12 basins. On the basis of the study output, we recommend using GRACE-MS estimates for groundwater studies over the region and other regions of the globe with similar climatic, hydrogeologic or groundwater withdrawal conditions.

    Related items

    Showing items related by title, author, creator and subject.

    • Accounting for spatial correlation errors in the assimilation of GRACE into hydrological models through localization
      Khaki, M.; Schumacher, M.; Forootan, E.; Kuhn, Michael; Awange, Joseph; van Dijk, A. (2017)
      © 2017 Elsevier Ltd Assimilation of terrestrial water storage (TWS) information from the Gravity Recovery And Climate Experiment (GRACE) satellite mission can provide significant improvements in hydrological modelling. ...
    • A two-update ensemble Kalman filter for land hydrological data assimilation with an uncertain constraint
      Khaki, M.; Ait-El-Fquih, B.; Hoteit, I.; Forootan, E.; Awange, Joseph; Kuhn, Michael (2017)
      © 2017 Elsevier B.V. Assimilating Gravity Recovery And Climate Experiment (GRACE) data into land hydrological models provides a valuable opportunity to improve the models’ forecasts and increases our knowledge of ...
    • Understanding the association between climate variability and the Nile's water level fluctuations and water storage changes during 1992–2016
      Khaki, Mehdi; Awange, Joseph; Forootan, E.; Kuhn, Michael (2018)
      With the construction of the largest dam in Africa, the Grand Ethiopian Renaissance Dam (GERD) along the Blue Nile, the Nile is back in the news. This, combined with Bujagali Dam on the White Nile are expected to bring ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.