Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Exfoliated MoS2 with porous graphene nanosheets for enhanced electrochemical hydrogen evolution

    Access Status
    Fulltext not available
    Authors
    Liu, Y.
    Liu, J.
    Li, Z.
    Fan, X.
    Li, Y.
    Zhang, F.
    Zhang, G.
    Peng, W.
    Wang, Shaobin
    Date
    2018
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Liu, Y. and Liu, J. and Li, Z. and Fan, X. and Li, Y. and Zhang, F. and Zhang, G. et al. 2018. Exfoliated MoS2 with porous graphene nanosheets for enhanced electrochemical hydrogen evolution. International Journal of Hydrogen Energy. 43 (30): pp. 13946-13952.
    Source Title
    International Journal of Hydrogen Energy
    DOI
    10.1016/j.ijhydene.2018.02.039
    ISSN
    0360-3199
    School
    WASM: Minerals, Energy and Chemical Engineering (WASM-MECE)
    Funding and Sponsorship
    http://purl.org/au-research/grants/arc/DP150103026
    URI
    http://hdl.handle.net/20.500.11937/67370
    Collection
    • Curtin Research Publications
    Abstract

    Porous graphene (P-rGO) was synthesized from graphene oxide (GO) via a one-pot calcination method with CO2 as an activation agent at 800 °C. Due to the special porous structure, the surface area of P-rGO can be increased to ∼759 m2/g. The P-rGO was then used as a support to incorporate with chemical exfoliated molybdenum disulfide (MoS2) for the fabrication of MoS2/P-rGO composite. Compared to bulk MoS2, the exfoliated MoS2 is in the 1T phase with a metallic property and smaller charge transfer resistance, thus has a better activity in electrochemical hydrogen evolution reaction (HER). The HER activity of 1T MoS2 could be further increased after the combination with P-rGO. The overpotential of 1T MoS2/P-rGO was only ∼130 mV vs. RHE, and the corresponding Tafel slope was ∼75 mV Dec−1. The special porous structure and good electric conductivity of P-rGO decrease the charge transfer resistance of the composite without sheltering too many active sites of MoS2, thus leading to the enhanced HER activity. As an efficient noble metal free HER catalyst, the 1T MoS2/P-rGO has great potential for large-scale hydrogen production.

    Related items

    Showing items related by title, author, creator and subject.

    • Synthesis and evaluation of porous composite hydrogels for tissue engineering applications
      Li, Chao (2012)
      The purpose of this dissertation was to synthesize and evaluate porous poly(2- hydroxyethyl methacrylate) (PHEMA) and PHEMA composite hydrogels containing various concentrations of titanium dioxide (TiO2) nanoparticles, ...
    • Heteroatom-Doped Nanoporous Carbon for Electrocatalysis
      Chen, S.; Liu, Jian; Qiao, S. (2015)
      The design of highly active and cost-effective electrocatalysts for replacing precious-metal catalysts is a key issue in the development of affordable renewable energy technologies in the future such as fuel cells, ...
    • ZnFe2O4 multi-porous microbricks/graphene hybrid photocatalyst: Facile synthesis, improved activity and photocatalytic mechanism
      Hou, Y.; Li, Xin Yong; Zhao, Q.; Chen, G. (2013)
      Great efforts have been made recently to develop graphene-based visible-light-response photocatalysts and investigate their application in environmental field. In this study, a novel graphene-supported ZnFe2O4 multi-porous ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.