Show simple item record

dc.contributor.authorChinhamu, K.
dc.contributor.authorHuang, Chun-Kai
dc.contributor.authorHuang, C.
dc.contributor.authorHammujuddy, J.
dc.date.accessioned2018-05-18T07:58:38Z
dc.date.available2018-05-18T07:58:38Z
dc.date.created2018-05-18T00:23:15Z
dc.date.issued2015
dc.identifier.citationChinhamu, K. and Huang, C. and Huang, C. and Hammujuddy, J. 2015. Empirical analyses of extreme value models for the South African mining index. South African Journal of Economics. 83 (1): pp. 41-55.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/67499
dc.identifier.doi10.1111/saje.12051
dc.description.abstract

© 2014 Economic Society of South Africa. While the classical normality assumption is simple to implement, it is well known to underestimate the leptokurtic behaviour demonstrated in most financial data. After examining properties of the Johannesburg Stock Exchange Mining Index returns, we propose two extreme value models to fit its negative tail with a higher degree of accuracy. The generalised extreme value distribution (GEVD) is fitted using the block maxima approach, while the generalised Pareto distribution (GPD) is fitted using the peaks-over-threshold method. Numerical assessment of value-at-risk (VaR) estimates indicates that both GEVD and GPD increasingly outperform the normal distribution as we move further into the lower tail. In addition, GEVD produces lower estimates relative to that of the historical VaR, and GPD provides slightly more conservative estimates for adequate capitalisation.

dc.titleEmpirical analyses of extreme value models for the South African mining index
dc.typeJournal Article
dcterms.source.volume83
dcterms.source.number1
dcterms.source.startPage41
dcterms.source.endPage55
dcterms.source.issn0038-2280
dcterms.source.titleSouth African Journal of Economics
curtin.accessStatusFulltext not available


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record