Remnants of eoarchean continental crust derived from a subducted proto-arc
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Eoarchean [3.6 to 4.0 billion years ago (Ga)] tonalite-trondhjemite-granodiorite (TTG) is the major component of Earth’s oldest remnant continental crust, thereby holding the key to understanding how continental crust originated and when plate tectonics started in the early Earth. TTGs are mostly generated by partial melting of hydrated mafic rocks at different depths, but whether this requires subduction remains enigmatic. Recent studies show that most Archean TTGs formed at relatively low pressures (≤1.5 GPa) and do not require subduction. We report a suite of newly discovered Eoarchean tonalitic gneisses dated at ~3.7 Ga from the Tarim Craton, northwestern China. These rocks are probably the oldest high-pressure TTGs so far documented worldwide. Thermodynamic and trace element modeling demonstrates that the parent magma may have been generated by water-fluxed partial melting of moderately enriched arc-like basalts at 1.8 to 1.9 GPa and 800° to 830°C, indicating an apparent geothermal gradient (400° to 450°C GPa−1) typical for hot subduction zones. They also locally record geochemical evidence for magma interaction with a mantle wedge. Accordingly, we propose that these high-pressure TTGs were generated by partial melting of a subducted proto-arc during arc accretion. Our model implies that modern-style plate tectonics was operative, at least locally, at ~3.7 Ga and was responsible for generating some of the oldest continental nuclei.
Related items
Showing items related by title, author, creator and subject.
-
Johnson, T.; Brown, M.; Gardiner, N.; Kirkland, Chris; Smithies, R. (2017)The geodynamic environment in which Earth's first continents formed and were stabilized remains controversial. Most exposed continental crust that can be dated back to the Archaean eon (4 billion to 2.5 billion years ago) ...
-
Johnson, Tim; Kirkland, Chris; Gardiner, Nicholas; Brown, M.; Smithies, R.; Santosh, M. (2019)It is estimated that around three quarters of Earth's first generation continental crust had been produced by the end of the Archaean Eon, 2.5 billion years ago. This ancient continental crust is mostly composed of variably ...
-
Ma, L.; Wang, Q.; Li, Zheng-Xiang; Wyman, D.; Yang, J.; Jiang, Z.; Liu, Y.; Gou, G.; Guo, H. (2015)Geophysical data illustrate that the Indian continental lithosphere has northward subducted beneath the Tibet Plateau, reaching the Bangong–Nujiang suture in central Tibet. However, when the Indian continental lithosphere ...