Atomistic molecular dynamics simulations of bioactive engrailed 1 interference peptides (EN1-iPeps)
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© Gandhi et al. The neural-specific transcription factor Engrailed 1 - is overexpressed in basallike breast tumours. Synthetic interference peptides - comprising a cell-penetrating peptide/nuclear localisation sequence and the Engrailed 1-specific sequence from the N-terminus have been engineered to produce a strong apoptotic response in tumour cells overexpressing EN1, with no toxicity to normal or non Engrailed 1-expressing cells. Here scaled molecular dynamics simulations were used to study the conformational dynamics of these interference peptides in aqueous solution to characterise their structure and dynamics. Transitions from disordered to a-helical conformation, stabilised by hydrogen bonds and proline-aromatic interactions, were observed throughout the simulations. The backbone of the wild-type peptide folds to a similar conformation as that found in ternary complexes of anterior Hox proteins with conserved hexapeptide motifs important for recognition of pre-B-cell leukemia Homeobox 1, indicating that the motif may possess an intrinsic preference for helical structure. The predicted NMR chemical shifts of these peptides are consistent with the Hox hexapeptides in solution and Engrailed 2 NMR data. These findings highlight the importance of aromatic residues in determining the structure of Engrailed 1 interference peptides, shedding light on the rational design strategy of molecules that could be adopted to inhibit other transcription factors overexpressed in other cancer types, potentially including other transcription factor families that require highly conserved and cooperative protein-protein partnerships for biological activity.
Related items
Showing items related by title, author, creator and subject.
-
Agostino, Mark; Sandrin, M.; Thompson, P.; Farrugia, W.; Ramsland, P.; Yuriev, E. (2011)Introduction: The existence of specific carbohydrates on the surface of a wide range of cells provides the opportunity for the development of highly targeted therapeutic agents. The potential applications of such agents ...
-
Lazoura, E.; Lodding, J.; Farrugia, W.; Day, S.; Ramsland, Paul; Apostolopoulos, V. (2009)The major histocompatibility complex (MHC) on the surface of antigen presenting cells functions to display peptides to the T cell receptor (TCR). Recognition of peptide-MHC by T cells initiates a cascade of signals, which ...
-
Namjoshi, Sarika M (2009)Recent developments in genetic engineering and biotechnology have resulted in anincrease in availability of therapeutic peptides and small anti-cytokines. Oraladministration is inappropriate as these molecules are unstable ...