A Novel Multivariate Volatility Modeling for Risk Management in Stock Markets
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Volatility modeling is crucial for risk management and asset allocation; this is an influential area in financial econometrics. The central requirement of volatility modeling is to be able to forecast volatility accurately. The literature review of volatility modeling shows that the approaches of model averaging estimation are commonly used to reduce model uncertainty in order to achieve a satisfactory forecasting reliability. However, those approaches attempt to forecast more reliable volatilities by integrating all forecasting outcomes equally from several volatility models. Forecasting patterns generated by each model may be similar. This may cause redundant computation without improving forecasting reliability. The proposed multivariate volatility modeling method which is called the fuzzy-method-involving multivariate volatility model (abbreviated as FMVM) classifies the individual models into smaller scale clusters and selects the most representative model in each cluster. Hence, repetitive but unnecessary computational burden can be reduced, and forecasting patterns from representative models can be integrated. The proposed FMVM is benchmarked against existing multivariate volatility models on forecasting volatilities of Hong Kong Hang Seng Index constituent stocks. Numerical results show that it can obtain relatively lower forecasting errors with less model complexity.
Related items
Showing items related by title, author, creator and subject.
-
Pojanavatee, Sasipa (2013)Mutual funds are emerging as an opportunity for investors to automatically diversify their investments in such a way that all their money is pooled and the investment decisions are left to a professional manager. There ...
-
Gurrib, Muhammad Ikhlaas (2008)This study gives an insight into the behaviour and performance of large speculators and large hedgers in 29 US futures markets. Using a trading determinant model and priced risk factors such as net positions and sentiment ...
-
Mostafa, Fahed. (2011)Market risk refers to the potential loss that can be incurred as a result of movements inmarket factors. Capturing and measuring these factors are crucial in understanding andevaluating the risk exposure associated with ...