Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    TiO2/void/porous Al2O3 shell embedded in polyvinylidene fluoride film for cleaning wastewater

    Access Status
    Fulltext not available
    Authors
    Zhang, Y.
    Hu, Y.
    Zhang, Y.
    Liu, Shaomin
    Date
    2018
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Zhang, Y. and Hu, Y. and Zhang, Y. and Liu, S. 2018. TiO2/void/porous Al2O3 shell embedded in polyvinylidene fluoride film for cleaning wastewater. Advanced Powder Technology. 29 (7): pp. 1582-1590.
    Source Title
    Advanced Powder Technology
    DOI
    10.1016/j.apt.2018.03.023
    ISSN
    0921-8831
    School
    WASM: Minerals, Energy and Chemical Engineering (WASM-MECE)
    URI
    http://hdl.handle.net/20.500.11937/67596
    Collection
    • Curtin Research Publications
    Abstract

    In order to selectively adsorb hydrolyzed polyacryamide (HPAM) and remove oil from oily wastewater, TiO 2 /void/porous Al 2 O 3 shell particles (TVAs) were designed and prepared though hydrolysis and calcination; subsequently, the TVAs were embedded into polyvinylidene fluoride (PVDF) to prepare composite films (TVAP films). As polymeric supports, TVAP films were employed to immobilize TiO 2 powder. TVAs were characterized using SEM, TEM, FT-IR, BET while TVAP films were characterized by SEM. The results indicate that the particle size of TVAs is mainly distributed between 700 and 800 nm, core-shell structure has been successfully built. The removal rates of TVAP films prepared under the optimum synthesis conditions for oil and HPAM reach 69.70% and 60.20% respectively, performing attractive properties of mass transfer and adsorption. Therefore, TVAP films are desirable as suitable materials to clean oily wastewater.

    Related items

    Showing items related by title, author, creator and subject.

    • Aqueous film-coating with the ultra-coater (hybrid coater)
      Kwok, Swee Har Teresa (2004)
      Hydroxypropylmethylcellulose (HPMC), which is available in different degrees of substitution and viscosity designations, is one of the most commonly used cellulosic polymers in aqueous film coating. It is relatively easy ...
    • Cellulose nanowhisker (CNW)/graphene nanoplatelet (GN) composite films with simultaneously enhanced thermal, electrical and mechanical Properties
      Liu, D.; Dong, Roger ; Liu, Y.; Ma, N.; Sui, G. (2019)
      Transparent cellulose nanowhisker (CNW)/ graphene nanoplatelet (GN) composite films were produced via sonication mixing and solution casting methods. Such composite films exhibited improved thermal, electrical and mechanical ...
    • Electrochemical studies on carbon dioxide corrosion and its inhibition.
      Tan, Yong-jun (1996)
      This thesis mainly concerns the application of electrochemical impedance spectroscopy (EIS) and electrochemical noise analysis (ENA) to the study of CO(subscript)2 corrosion of mild steel and its inhibition. The primary ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.