Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Volatile variations in magmas related to porphyry Cu-Au deposits: Insights from amphibole geochemistry, Duolong district, central Tibet

    Access Status
    Fulltext not available
    Authors
    Li, J.
    Qin, K.
    Li, G.
    Evans, Noreen
    Zhao, J.
    Yue, Y.
    Xie, J.
    Date
    2018
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Li, J. and Qin, K. and Li, G. and Evans, N. and Zhao, J. and Yue, Y. and Xie, J. 2018. Volatile variations in magmas related to porphyry Cu-Au deposits: Insights from amphibole geochemistry, Duolong district, central Tibet. Ore Geology Reviews. 95: pp. 649-662.
    Source Title
    Ore Geology Reviews
    DOI
    10.1016/j.oregeorev.2018.03.019
    ISSN
    0169-1368
    School
    School of Earth and Planetary Sciences (EPS)
    URI
    http://hdl.handle.net/20.500.11937/67790
    Collection
    • Curtin Research Publications
    Abstract

    Ore-forming fluid exsolution in a shallow magma chamber is a critical step in the formation of porphyry Cu ± Mo ± Au deposits but one for which direct evidence is rarely found. Here, Cl abundance, major-trace element content and H isotope analysis of amphibole in diorite and barren granodiorite porphyry samples from the Duolong porphyry-epithermal Cu-Au district are presented in order to reveal processes associated with fluid exsolution and magma evolution. Low-Al Mg-hornblende formed in ore-bearing diorite at ∼750–860 °C and ∼80–200 MPa. On primitive mantle-normalized diagrams, these low-Al amphibole grains have slightly convex upward REE patterns with distinctly negative Eu anomalies and negative anomalies in Pb, Sr, Eu, Zr, Hf, and Ti anomalies, suggesting crystallization from the same arc magma after plagioclase and magnetite crystallization. A large variation in estimated melt H2O (∼6 to 3 wt%) and Cl content (0.09–0.38 wt%), as well as low δD values (−103 to −113‰) indicate that the magma underwent large-scale fluid exsolution, contributing to the formation of Duolong Cu-Au mineralization. Additionally, amphibole from a barren granodiorite porphyry shows two distinct populations, distinguished by their Al content. This intrusion has low-Al amphibole (Mg-hornblende) which formed at similar conditions to low-Al amphiboles in the diorite (∼790–870 °C and ∼100–230 MPa), whereas high-Al amphibole (tschermakite) formed at ∼880–970 °C and ∼210–400 MPa. Some high-Al amphibole phenocrysts have slightly convex REE patterns with no negative Eu anomalies, a depletion in Nb, Zr, and Hf, and positive Sr, Ba, and Pb anomalies, likely consistent with amphibole crystallization from more mafic basaltic-andesitic melts. Low-Al amphibole in the granodiorite porphyry shows different compositional trends compared to those in the diorite, suggesting that they crystallized from different magmas. Considering the evidence for mafic magma replenishment suggested by the positive correlation between AlIV and Mg# values in high-Al amphibole, the low-Al amphibole in the barren granodiorite porphyry likely crystallized from a new hybrid magma with mafic to intermediate-felsic magma compositions. Meanwhile, smaller variations in Cl content (0.08–0.24 wt%) in low-Al amphibole was dominantly controlled by magma evolution (shown by variable Mg#) rather than fluid exsolution. Thus, the low δD values (−102 to −122‰) were likely inherited from evolved dioritic magmas that underwent fluid exsolution. Importantly, the Cl compositional variation of amphibole has a potential application as a powerful tool to identify ore-bearing and barren intrusions within porphyry Cu ± Mo ± Au deposits.

    Related items

    Showing items related by title, author, creator and subject.

    • Mineralogical evidence for crystallization conditions and petrogenesis of ilmenite-series I-type granitoids at the Baogutu reduced porphyry Cu deposit (Western Junggar, NW China): Mössbauer spectroscopy, EPM and LA-(MC)-ICPMS analyses
      Cao, Mingjian; Qin, K.; Li, G.; Evans, Noreen; Hollings, P.; Maisch, M.; Kappler, A. (2017)
      © 2017 Elsevier B.V.Primary ore-forming minerals retain geochemical signatures of magmatic crystallization information and can reveal the petrochemical conditions prevalent at the time of their formation. The Baogutu ...
    • Phenocryst zonation in porphyry-related rocks of the Baguio District, Philippines: Evidence for magmatic and metallogenic processes
      Cao, Mingjian; Evans, Noreen; Hollings, P.; Cooke, D.; McInnes, Brent; Qin, K.; Li, G. (2018)
      © The Author(s) 2018. Published by Oxford University Press. All rights reserved. Mantle-derived mafic magmas may be the source of ore-forming metals in large Cu porphyry systems, but evidence of primary petrogenetic and ...
    • Late Carboniferous high εNd(t)– εHf(t) granitoids, enclaves and dikes in western Junggar, NW China: Ridge-subduction-related magmatism and crustal growth
      Tang, G.; Wang, Q.; Wyman, D.; Li, Zheng-Xiang; Zhao, Z.; Yang, Y. (2012)
      We report results of petrologic, geochronological and geochemical investigation of the Late Carboniferous diorites, granodiorites, amphibole (Am)-bearing granites, and associated dioritic and monzonitic enclaves and mafic ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.