Carbon dioxide/brine wettability of porous sandstone versus solid quartz: An experimental and theoretical investigation
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Hypothesis: Wettability plays an important role in underground geological storage of carbon dioxide because the fluid flow and distribution mechanism within porous media is controlled by this phenomenon. CO 2 pressure, temperature, brine composition, and mineral type have significant effects on wettability. Despite past research on this subject, the factors that control the wettability variation for CO 2 /water/minerals, particularly the effects of pores in the porous substrate on the contact angle at different pressures, temperatures, and salinities, as well as the physical processes involved are not fully understood. Experiments: We measured the contact angle of deionised water and brine/CO 2 /porous sandstone samples at different pressures, temperatures, and salinities. Then, we compared the results with those of pure quartz. Finally, we developed a physical model to explain the observed phenomena. Findings: The measured contact angle of sandstone was systematically greater than that of pure quartz because of the pores present in sandstone. Moreover, the effect of pressure and temperature on the contact angle of sandstone was similar to that of pure quartz. The results showed that the contact angle increases with increase in temperature and pressure and decreases with increase in salinity.
Related items
Showing items related by title, author, creator and subject.
-
Arif, M.; Barifcani, Ahmed; Iglauer, S. (2016)Wettability of CO2/brine/mineral systems plays a significant role in the underground geological storage of CO2 as it governs the fluid flow and distribution mechanism within the porous medium. Technically, wettability is ...
-
Arif, Muhammad; Barifcani, Ahmed; Lebedev, Maxim; Iglauer, Stefan (2017)CO 2 storage refers to the methods employed to inject CO 2 in depleted oil and gas reservoirs and deep saline aquifers for long term storage of CO 2 with the objective to reduce the anthropogenic CO 2 emissions. ...
-
Xie, Sam; Brady, P.; Pooryousefy, Ehsan; Zhou, D.; Liu, Y.; Saeedi, Ali (2017)The mechanism(s) of low salinity water flooding (LSWF) must be better understood at high temperatures and pressures if the method is to be applied in high T/P kaolinite-bearing sandstone reservoirs. We measured contact ...