Discovery of radio emission from the symbiotic X-ray binary system GX 1+4
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Funding and Sponsorship
Remarks
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2017 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
Collection
Abstract
We report the discovery of radio emission from the accreting X-ray pulsar and symbiotic X-ray binary GX 1+4 with the Karl G. Jansky Very Large Array. This is the first radio detection of such a system, wherein a strongly magnetized neutron star accretes from the stellar wind of an M-type giant companion. We measure a 9 GHz radio flux density of 105.3 ± 7.3 μJy, but cannot place meaningful constraints on the spectral index due to a limited frequency range. We consider several emission mechanisms that could be responsible for the observed radio source. We conclude that the observed properties are consistent with shocks in the interaction of the accretion flow with the magnetosphere, a synchrotron-emitting jet, or a propeller-driven outflow. The stellar wind from the companion is unlikely to be the origin of the radio emission. If the detected radio emission originates from a jet, it would show that strong magnetic fields (≥1012 G) do not necessarily suppress jet formation.
Related items
Showing items related by title, author, creator and subject.
-
Hoang, D.N.; Shimwell, T.W.; Van Weeren, R.J.; Brunetti, G.; Röttgering, H.J.A.; Andrade-Santos, F.; Botteon, A.; Brüggen, M.; Cassano, R.; Drabent, A.; De Gasperin, F.; Hoeft, M.; Intema, Huib ; Rafferty, D.A.; Shweta, A.; Stroe, A. (2019)Context. Extended synchrotron radio sources are often observed in merging galaxy clusters. Studies of the extended emission help us to understand the mechanisms in which the radio emitting particles gain their relativistic ...
-
Lynch, Christene; Murphy, T.; Lenc, E.; Kaplan, D. (2018)Like the magnetized planets in our Solar system, magnetized exoplanets should emit strongly at radio wavelengths. Radio emission directly traces the planetary magnetic fields and radio detections can place constraints on ...
-
Lynch, Christene; Murphy, T.; Ravi, V.; Hobbs, G.; Lo, K.; Ward, C. (2016)We report the results of a volume-limited survey using the Australia Telescope Compact Array to search for transient and quiescent radio emission from 15 Southern hemisphere ultracool dwarfs. We detect radio emission from ...