Show simple item record

dc.contributor.authorNtogramatzidis, Lorenzo
dc.contributor.authorFerrante, A.
dc.date.accessioned2018-05-18T08:00:44Z
dc.date.available2018-05-18T08:00:44Z
dc.date.created2018-05-18T00:23:06Z
dc.date.issued2019
dc.identifier.citationNtogramatzidis, L. and Ferrante, A. 2019. The geometry of the generalized algebraic Riccati equation and of the singular Hamiltonian system. Linear and Multilinear Algebra. 67 (1): pp. 158-174.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/68078
dc.identifier.doi10.1080/03081087.2017.1415292
dc.description.abstract

This paper analyses the properties of the solutions of the generalized continuous algebraic Riccati equation from a geometric perspective. This analysis reveals the presence of a subspace that may provide an appropriate degree of freedom to stabilize the system in the related optimal control problem even in cases where the Riccati equation does not admit a stabilizing solution.

dc.publisherTaylor & Francis
dc.titleThe geometry of the generalized algebraic Riccati equation and of the singular Hamiltonian system
dc.typeJournal Article
dcterms.source.startPage1
dcterms.source.endPage17
dcterms.source.issn0308-1087
dcterms.source.titleLinear and Multilinear Algebra
curtin.departmentSchool of Electrical Engineering, Computing and Mathematical Science (EECMS)
curtin.accessStatusFulltext not available


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record