Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Modeling of hydrogen separation through porous YSZ hollow fiber-supported graphene oxide membrane

    Access Status
    Open access via publisher
    Authors
    Jin, Y.
    Meng, X.
    Yang, N.
    Meng, B.
    Sunarso, J.
    Liu, Shaomin
    Date
    2018
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Jin, Y. and Meng, X. and Yang, N. and Meng, B. and Sunarso, J. and Liu, S. 2018. Modeling of hydrogen separation through porous YSZ hollow fiber-supported graphene oxide membrane. AI Ch E Journal.
    Source Title
    AI Ch E Journal
    DOI
    10.1002/aic.16144
    Additional URLs
    https://rss.onlinelibrary.wiley.com/doi/am-pdf/10.1002/aic.16144
    ISSN
    0001-1541
    School
    WASM: Minerals, Energy and Chemical Engineering (WASM-MECE)
    Funding and Sponsorship
    http://purl.org/au-research/grants/arc/DP180103861
    URI
    http://hdl.handle.net/20.500.11937/68239
    Collection
    • Curtin Research Publications
    Abstract

    In this work, hydrogen (H 2 ) permeation fluxes through 230 nm-thick graphene oxide (GO) membrane deposited on porous YSZ hollow fiber were measured and correlated to an explicit H 2 permeation model. H 2 fluxes through such GO-YSZ hollow fiber membrane increased from 4.83 × 10 -8 mol cm -2 s -1 to 2.11 × 10 -7 mol cm -2 s -1 with temperature rise from 20 to 100 °C. The activation energy of H 2 permeation was determined by the linear regression of the experimental data and was applied in the theoretical calculations. The model predictions fit well the temperature dependent and the argon sweep gas flow rate dependent H 2 fluxes data. Using the derived permeation model, the effects of vacuum pressure at lumen side and H 2 partial pressure at shell side, membrane area, and GO membrane film thickness on the membrane performance were simulated and discussed to provide insights for practical applications.

    Related items

    Showing items related by title, author, creator and subject.

    • Membrane performance and build-up of solute during small scale reverse osmosis operation
      Nasir, Subriyer (2007)
      Reverse Osmosis (RO) is widely accepted as an alternative method to produce freshwater from different feed water sources. This technology competitively substitutes the thermal processes in the near future because of several ...
    • Skin penetration enhancement techniques
      Krishnan, Gayathri (2011)
      Transdermal drug delivery is an effective alternative to conventional oral and injectable drug delivery routes. It offers painless and convenient once daily or even once weekly dosing for a variety of clinical indications. ...
    • Effect of feed channel spacer geometry on hydrodynamics and mass transport in membrane modules
      Saeed, Asim (2012)
      Among different types of membrane modules used for cross flow filtration processes, Spiral Wound Module (SWM) dominates in the area of Ultra Filtration (UF), Nano Filtration (NF) and RO (Reverse Osmosis) due to high packing ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.