A neuro-adaptive maximum power tracking control of variable speed wind turbines with actuator faults
Access Status
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISBN
School
Collection
Abstract
© 2017 IEEE. This paper presents a neural adaptive fault tolerant control design of wind turbines in partial load operation. The controller is designed to be robust against actuator faults as well as noise, while keeping the wind turbine generating as much power as possible. The wind speed variation is considered as an external disturbance, and an adaptive radial basis function neural network is utilized to estimate aerodynamic torque. Estimation of a fault size and establishment of a desired trajectory are adopted in the design. Using the proposed method, the reliability of wind power generation is increased so as to track the optimum power point under faulty conditions, close to the fault free case. Uniformly ultimately boundedness of the closed-loop system is achieved using Lyapunov synthesis. The designed controller is verified via numerical simulations, showing comparison with an industrial reference controller, using predefined criteria.
Related items
Showing items related by title, author, creator and subject.
-
Mohseni, Mansour (2011)A review of the latest international grid codes shows that large wind power plants are stipulated to not only ride-through various fault conditions, but also exhibit adequate active and reactive power responses during the ...
-
Yunus, A. M. Shiddiq (2012)Due to the rising demand of energy over several decades, conventional energy resources have been continuously and drastically explored all around the world. As a result, global warming is inevitable due to the massive ...
-
Habibi, H.; Rahimi Nohooji, H.; Howard, Ian (2017)The operational wind turbine efficiency in the power maximization regions and reliability improvement to reduce the produced power cost can both be enhanced by using an appropriate controller to cope with the highly ...