Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Enhancement of oxygen permeation fluxes of La0.6Sr0.4CoO3-dhollow fiber membrane via macrostructure modification and (La0.5Sr0.5)2CoO4+ddecoration

    Access Status
    Fulltext not available
    Authors
    Han, N.
    Meng, B.
    Yang, N.
    Sunarso, J.
    Zhu, Z.
    Liu, Shaomin
    Date
    2018
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Han, N. and Meng, B. and Yang, N. and Sunarso, J. and Zhu, Z. and Liu, S. 2018. Enhancement of oxygen permeation fluxes of La0.6Sr0.4CoO3-dhollow fiber membrane via macrostructure modification and (La0.5Sr0.5)2CoO4+ddecoration. Chemical Engineering Research and Design. 134: pp. 487-496.
    Source Title
    Chemical Engineering Research and Design
    DOI
    10.1016/j.cherd.2018.04.038
    ISSN
    0263-8762
    School
    WASM: Minerals, Energy and Chemical Engineering (WASM-MECE)
    URI
    http://hdl.handle.net/20.500.11937/68550
    Collection
    • Curtin Research Publications
    Abstract

    © 2018 Institution of Chemical Engineers Oxygen-selective perovskite hollow fiber membrane can be used to obtain an effective oxygen separation from air at high temperature (above 700 °C) for large scale application. Here, we display that oxygen permeation fluxes of La 0.6 Sr 0.4 CoO 3 (LSC 113 ) hollow fiber membrane was enhanced by macrostructure modification and (La,Sr) 2 CoO 4 (LSC 214 ) surface decoration. By changing the cross-section macrostructure from sandwich structure (for LSC-a fiber) to asymmetric structure (for LSC-b fiber), the oxygen flux was improved by up to 3.6-fold. Applying porous LSC 214 decoration on LSC 113 furthermore enhanced the oxygen fluxes for LSC-a and LSC-b, by up to 6.8-fold and 1.9-fold, respectively.

    Related items

    Showing items related by title, author, creator and subject.

    • Optimizing Oxygen Transport Through La0.6Sr0.4Co0.2Fe0.8O3-δ Hollow Fiber by Microstructure Modification and Ag/Pt Catalyst Deposition
      Han, D.; Sunarso, J.; Tan, X.; Yan, Z.; Liu, Lihong; Liu, Shaomin (2012)
      This work compares the oxygen permeation fluxes of five different La0.6Sr0.4Co0.2Fe0.8O3−δ membranes (e.g. disk, conventional hollow fiber, modified hollow fiber, Ag- or Pt-deposited hollow fiber membranes) to elucidate ...
    • Perovskite hollow fiber membranes supported in a porous and catalytically active perovskite matrix for air separation
      Hu, Y.; An, R.; Chu, Y.; Tan, X.; Sunarso, J.; Wang, Shaobin; Liu, Shaomin (2018)
      © 2017 Elsevier B.V. Mixed conducting perovskite membranes have attracted much research interest for use in air separation. However, the application of perovskite hollow fiber membranes is limited by their brittleness. ...
    • Reinforced perovskite hollow fiber membranes with stainless steel as the reactive sintering aid for oxygen separation
      Wang, B.; Song, J.; Tan, X.; Meng, B.; Liu, Jian; Liu, Shaomin (2016)
      Unlike polymeric hollow fiber membrane which has been successfully used in industrial applications, ceramic hollow fiber membrane has not been widely applied due to their brittle nature of ceramic materials. In this work, ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.