Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Preparation of silicalite–polyamide composite membranes for desalination

    Access Status
    Fulltext not available
    Authors
    Li, D.
    He, L.
    Dong, Dehua
    Forsyth, M.
    Wang, H.
    Date
    2012
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Li, D. and He, L. and Dong, D. and Forsyth, M. and Wang, H. 2012. Preparation of silicalite–polyamide composite membranes for desalination. Asia-Pacific Journal of Chemical Engineering. 7 (3): pp. 434-441.
    Source Title
    Asia-Pacific Journal of Chemical Engineering
    DOI
    10.1002/apj.588
    ISSN
    1932-2135
    URI
    http://hdl.handle.net/20.500.11937/6871
    Collection
    • Curtin Research Publications
    Abstract

    Silicalite–polyamide composite membranes were synthesized via interfacial polymerization on a commercial polysulfone substrate, for the purpose of studying the effect of the addition of silicalite nanocrystals on the desalination property of polyamide membrane. The scanning electron microscopy (SEM) images showed that both plain polyamide membrane and silicalite–polyamide composite membranes exhibited rough surface morphology which is similar to the commercial polyamide membranes. The existence of silicalite nanocrystals in the silicalite–polyamide composite membrane was confirmed by energy dispersive X-ray spectroscopy (EDXS) and high-resolution transmission electron microscopy (HRTEM). The effect of loading of silicalite nanocrystals on the desalination property of membranes was examined. By increasing the loading of silicalite nanocrystals, the water flux of silicalite–polyamide composite membranes increased, whereas the salt selectivity decreased significantly. Plain polyamide membrane had salt rejection of 98.1% and a flux of 5.07 × 10−7 m3/m2·s, whereas the silicalite–polyamide composite membrane, prepared from trimesoyl chloride (TMC)–hexane with 0.5% (w/v) silicalite, had a water flux of 2.74 × 10−6 m3/m2·s and NaCl rejection of 50% at a feed pressure of 34.48 bar by using 2000 ppm salt solution as the feed. The transport mechanisms of the silicalite–polyamide composite membranes were discussed.

    Related items

    Showing items related by title, author, creator and subject.

    • Synthesis of polymeric nanocomposite membranes for aqueous and non-aqueous media
      Rajaeian, Babak (2012)
      Thin film composite (TFC) membranes have long been used by many large-scale applications (i.e., water and wastewater treatment). Recently, conventional polymeric TFC membranes are facing with short longevity due to high ...
    • Direct Hydroxylation of Benzene to Phenol Using Palladium-Titanium Silicalite Zeolite Bifunctional Membrane Reactors
      Wang, X.; Meng, B.; Tan, X.; Zhang, X.; Zhuang, S.; Liu, Lihong. (2014)
      A series of titanium silicalite zeolite catalysts were successfully incorporated inside a Pd membrane reactor aiming to improve the direct hydroxylation of benzene to phenol. The correlation between the membrane structure ...
    • Fabrication and characterization of polyamide thin film nanocomposite (TFN) nanofiltration membrane impregnated with TiO2 nanoparticles
      Rajaeian, Babak; Rahimpour, A.; Tade, Moses; Liu, Shaomin (2013)
      A novel thin-film nanocomposite (TFN) nanofiltration membrane has been developed via interfacial incorporation of aminosilanized TiO2 nanoparticles. Polyethersulfone (PES) barrier coating on a porous a-Al2O3 ceramic hollow ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.