Structural damage identification based on autoencoder neural networks and deep learning
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© 2018 Elsevier Ltd Artificial neural networks are computational approaches based on machine learning to learn and make predictions based on data, and have been applied successfully in diverse applications including structural health monitoring in civil engineering. It is difficult to optimize the weights in the neural networks that have multiple hidden layers due to the vanishing gradient issue. This paper proposes an autoencoder based framework for structural damage identification, which can support deep neural networks and be utilized to obtain optimal solutions for pattern recognition problems of highly non-linear nature, such as learning a mapping between the vibration characteristics and structural damage. Two main components are defined in the proposed framework, namely, dimensionality reduction and relationship learning. The first component is to reduce the dimensionality of the original input vector while preserving the required necessary information, and the second component is to perform the relationship learning between the features with the reduced dimensionality and the stiffness reduction parameters of the structure. Vibration characteristics, such as natural frequencies and mode shapes, are used as the input and the structural damage are considered as the output vector. A pre-training scheme is performed to train the hidden layers in the autoencoders layer by layer, and fine tuning is conducted to optimize the whole network. Numerical and experimental investigations on steel frame structures are conducted to demonstrate the accuracy and efficiency of the proposed framework, comparing with the traditional ANN methods.
Related items
Showing items related by title, author, creator and subject.
-
Wang, Ruhua; Chencho,; An, Senjian ; Li, Jun ; Li, Ling ; Hao, Hong ; Liu, Wan-Quan (2021)Convolutional neural networks have been widely employed for structural health monitoring and damage identification. The convolutional neural network is currently considered as the state-of-the-art method for structural ...
-
Pathirage, C.; Li, Jun; Li, L.; Hao, Hong; Liu, Wan-Quan (2018)Damage detection in structures is performed via vibration based structural identification. Modal information, such as frequencies and mode shapes, are widely used for structural damage detection to indicate the health ...
-
Pathirage, C.; Li, Jun; Li, L.; Hao, Hong; Liu, Wan-Quan; Wang, R. (2019)© The Author(s) 2018. This article proposes a deep sparse autoencoder framework for structural damage identification. This framework can be employed to obtain the optimal solutions for some pattern recognition problems ...