Global weak solutions to a generalized Benjamin-Bona-Mahony-Burgers equation
dc.contributor.author | LI, R. | |
dc.contributor.author | LAI, C. | |
dc.contributor.author | Wu, Yong Hong | |
dc.date.accessioned | 2018-06-29T12:26:46Z | |
dc.date.available | 2018-06-29T12:26:46Z | |
dc.date.created | 2018-06-29T12:08:48Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | LI, R. and LAI, C. and Wu, Y.H. 2018. Global weak solutions to a generalized Benjamin-Bona-Mahony-Burgers equation. Acta Mathematica Scientia. 38 (3): pp. 915-925. | |
dc.identifier.uri | http://hdl.handle.net/20.500.11937/68713 | |
dc.identifier.doi | 10.1016/S0252-9602(18)30792-6 | |
dc.description.abstract |
© 2018 Wuhan Institute of Physics and Mathematics The existence of global weak solutions for a generalized Benjamin-Bona-Mahony-Burgers equation is established in the space C([0,8)×R)nL 8 ([0,8); H 1 (R)) under the condition that its initial value belongs to the space H 1 (R). A one-sided super bound estimate and a space-time higher-norm estimate on the first order derivatives of the solution with respect to the space variable are derived to prove the existence. | |
dc.publisher | Elsevier BV | |
dc.title | Global weak solutions to a generalized Benjamin-Bona-Mahony-Burgers equation | |
dc.type | Journal Article | |
dcterms.source.volume | 38 | |
dcterms.source.number | 3 | |
dcterms.source.startPage | 915 | |
dcterms.source.endPage | 925 | |
dcterms.source.issn | 0252-9602 | |
dcterms.source.title | Acta Mathematica Scientia | |
curtin.department | School of Electrical Engineering, Computing and Mathematical Science (EECMS) | |
curtin.accessStatus | Fulltext not available |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |