CPHD Filtering With Unknown Clutter Rate and Detection Profile
Access Status
Authors
Date
2011Type
Metadata
Show full item recordCitation
Source Title
ISSN
Collection
Abstract
In Bayesian multi-target filtering, we have to contend with two notable sources of uncertainty, clutter and detection. Knowledge of parameters such as clutter rate and detection profile are of critical importance in multi-target filters such as the probability hypothesis density (PHD) and cardinalized PHD (CPHD) filters. Significant mismatches in clutter and detection model parameters result in biased estimates. In practice, these model parameters are often manually tuned or estimated offline from training data. In this paper we propose PHD/CPHD filters that can accommodate model mismatch in clutter rate and detection profile. In particular we devise versions of the PHD/CPHD filters that can adaptively learn the clutter rate and detection profile while filtering. Moreover, closed-form solutions to these filtering recursions are derived using Beta and Gaussian mixtures. Simulations are presented to verify the proposed solutions.
Related items
Showing items related by title, author, creator and subject.
-
Mahler, R.; Vo, Ba Tuong; Vo, Ba-Ngu (2011)In Bayesian multi-target filtering we have to contend with two notable sources of uncertainty, clutter and detection. Knowledge of parameters such as clutter rate and detection profile are of critical importance in ...
-
Do, C.T.; Nguyen, Tran Thien Dat ; Nguyen, Hoa (2022)This paper proposes an efficient and robust algorithm to estimate target trajectories with unknown target detection profiles and clutter rates using measurements from multiple sensors. In particular, we propose to combine ...
-
Mahler, Ronald (2014)The "background-agnostic" CPHD filter was introduced at the 2010 SPIE Defense, Security and Sensing Symposium in 2010. It is a CPHD filter that is capable of operation when both the clutter background and the target-detection ...