Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    CFD model of a methane fuelled single cell SOFC stack for analysing the combined effects of macro/micro structural parameters

    Access Status
    Fulltext not available
    Authors
    Hosseini, Shahin
    Ahmed, K.
    Tade, Moses
    Date
    2013
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Hosseini, Shahin and Ahmed, Khaliq and Tade, Moses O. 2013. CFD model of a methane fuelled single cell SOFC stack for analysing the combined effects of macro/micro structural parameters. Journal of Power Sources. 234: pp. 180-196.
    Source Title
    Journal of Power Sources
    DOI
    10.1016/j.jpowsour.2012.12.123
    ISSN
    0378-7753
    URI
    http://hdl.handle.net/20.500.11937/6876
    Collection
    • Curtin Research Publications
    Abstract

    A fully coupled CFD model of a direct internal reforming single cell SOFC stack previously designed by Ceramic Fuel Cell Ltd (CFCL) has been developed. In this model, an innovative solution technique for accelerating finite volume treatment of the electrodes as two distinct layers, a diffusion layer and a catalyst layer, is taken to analyse the combined effects of the macro/microstructural parameters on distribution of fields and each of the reactions involved in the process. To assess the simulation results, the model is not only evaluated with the CFCL experimental data that was reported from the similar geometry, but it is also assessed for the effects of the reforming and water gas shift reactions. It is found that a 3D model is more representative of the global reforming reaction rate. Furthermore, distributions of the key parameters along different spatial domains disclose the complex interaction between the anode flow field design and microstructural parameters of the anode diffusion layer. In fact, an optimal set of the anode microstructure that promotes the reforming reaction rate will not automatically result in improved SOFC performance. The developed model is a powerful tool to study complex fuel cell related problems and to optimize fuel cells’ structure.

    Related items

    Showing items related by title, author, creator and subject.

    • In situ fabrication of (Sr,La)FeO4 with CoFe alloy nanoparticles as an independent catalyst layer for direct methane-based solid oxide fuel cells with a nickel cermet anode
      Chang, H.; Chen, H.; Shao, Zongping; Shi, J.; Bai, J.; Li, S. (2016)
      © 2016 The Royal Society of Chemistry.An independent catalyst layer is applied to develop a highly effective way to reduce coking when operating in methane based fuels, in which the catalyst layer is separated from a Ni ...
    • Future prospects for the design of 'state-of-the-art' solid oxide fuel cells
      Mori, T.; Wepf, R.; Jiang, San Ping (2020)
      Solid oxide fuel cells (SOFCs) are the clean and efficient power sources for generating electricity from a variety of fuels (i.e. hydrogen, natural gas, and biogas) [1-3]. Also, SOFCs have no corrosive components and do ...
    • Stable direct-methane solid oxide fuel cells with calcium-oxide-modified nickel-based anodes operating at reduced temperatures
      Qu, J.; Wang, W.; Chen, Y.; Deng, X.; Shao, Zongping (2016)
      In this study, some basic oxide additives are introduced into the conventional Ni–Ce0.8Sm0.2O1.9 (SDC) cermet anodes of solid oxide fuel cells (SOFCs) for using methane as the fuel. The effects of incorporating basic ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.