Pore characterization and clay bound water assessment in shale with a combination of NMR and low-pressure nitrogen gas adsorption
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© 2018 Elsevier B.V. Pore size distribution (PSD) and the volume of clay bound water (CBW) are crucial parameters for gas shale reservoirs formation evaluation. Low-field nuclear magnetic resonance (LF-NMR) has been extensively applied to characterize petrophysical properties of reservoirs. However, limited understanding remains for unconventional shales. Defining NMR T 2 cutoff to differentiate CBW from free water is a challenge in shales since conventional approach, such as using centrifuge, is not feasible to completely remove free water in tight shales. Thermal treatment is therefore suggested for further extraction of movable pore water, however, the influence of temperature on nanoscale pore structure and clay mineralogical composition has been underestimated in previous studies and thus requires further investigation. This paper re-defines the critical dehydration temperature for accurate PSD interpretation in Permian Carynginia shale, Western Australia to determine T 2 cutoff for CBW. By using low-pressure N 2 gas adsorption (LP-N 2 -GA) in parallel with LF-NMR, we identified a striking anomalous PSD consistency for critical temperature detection and verification. Our results shows that movable pore water can be maximally removed around 80 °C (75 °C), while the sensitive clay, CBW and microstructure are well-preserved for accurate petrophysical evaluation. Clay mineral conversion would occur when temperatures are higher than 80 °C, while temperatures lower than 75 °C would induce large misinterpretations for nanopore structure. Our recommended scheme could provide a potential adaptability for the formation evaluation of Permian Carynginia shale in the downhole practices.
Related items
Showing items related by title, author, creator and subject.
-
Al Hinai, Adnan Saif Hamed; Rezaee, M. Reza (2015)Assessing shale formations is a major challenge in the oil and gas industry. The complexities are mainly due to the ultra-low permeability, the presence of a high percentage of clay, and the heterogeneity of the formation. ...
-
Fatah, Ahmed ; Bennour, Ziad ; Ben Mahmud, Hisham ; Gholami, Raoof ; Hossain, Mofazzal (2020)© 2020 by the authors. Carbon capture and storage (CCS) is a developed technology to minimize CO2 emissions and reduce global climate change. Currently, shale gas formations are considered as a suitable target for CO2 ...
-
Li, Pei; Zhang, J.; Rezaee, Reza ; Dang, W.; Tang, X.; Nie, H.; Chen, S. (2021)The variation in pore water distribution within gas shale reservoirs has a significant effect on gas content, and thus on resource evaluation. However, the characteristics of water micro-distribution and its effects on ...