Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Fragmentation and disk formation in high-mass star formation: The ALMA view of G351.77-0.54 at 0.06" resolution

    266719.pdf (2.485Mb)
    Access Status
    Open access
    Authors
    Beuther, H.
    Walsh, Andrew
    Johnston, K.
    Henning, T.
    Kuiper, R.
    Longmore, S.
    Walmsley, C.
    Date
    2017
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Beuther, H. and Walsh, A. and Johnston, K. and Henning, T. and Kuiper, R. and Longmore, S. and Walmsley, C. 2017. Fragmentation and disk formation in high-mass star formation: The ALMA view of G351.77-0.54 at 0.06" resolution. Astronomy and Astrophysics. 603: A10.
    Source Title
    Astronomy and Astrophysics
    DOI
    10.1051/0004-6361/201630126
    ISSN
    0004-6361
    School
    Curtin Institute of Radio Astronomy (Physics)
    Remarks

    Reproduced with permission from Astronomy & Astrophysics, © ESO

    URI
    http://hdl.handle.net/20.500.11937/68775
    Collection
    • Curtin Research Publications
    Abstract

    © ESO, 2017. Context. The fragmentation of high-mass gas clumps and the formation of the accompanying accretion disks lie at the heart of high-mass star formation research. Aims. We resolve the small-scale structure around the high-mass hot core G351.77-0.54 to investigate its disk and fragmentation properties. Methods. Using the Atacama Large Millimeter Array at 690 GHz with baselines exceeding 1.5 km, we study the dense gas, dust, and outflow emission at an unprecedented spatial resolution of 0.06'' (130 AU at 2.2 kpc). Results. Within the inner few 1000 AU, G351.77 is fragmenting into at least four cores (brightness temperatures between 58 and 201 K). The central structure around the main submm source #1 with a diameter of ~0.5'' does not show additional fragmentation. While the CO(6-5) line wing emission shows an outflow lobe in the northwestern direction emanating from source #1, the dense gas tracer CH 3 CN shows a velocity gradient perpendicular to the outflow that is indicative of rotational motions. Absorption profile measurements against the submm source #2 indicate infall rates on the order of 10 -4 to 10 -3 M . yr -1 , which can be considered as an upper limit of the mean accretion rates. The position-velocity diagrams are consistent with a central rotating disk-like structure embedded in an infalling envelope, but they may also be influenced by the outflow. Using the CH 3 CN(37 k -36 k ) k-ladder with excitation temperatures up to 1300 K, we derive a gas temperature map for source #1 exhibiting temperatures often in excess of 1000 K. Brightness temperatures of the submm continuum barely exceed 200 K. This discrepancy between gas temperatures and submm dust brightness temperatures (in the optically thick limit) indicates that the dust may trace the disk mid-plane, whereas the gas could trace a hotter gaseous disk surface layer. We conduct a pixel-by-pixel Toomre gravitational stability analysis of the central rotating structure. The derived high Q values throughout the structure confirm that this central region appears stable against gravitational instability. Conclusions. Resolving for the first time a high-mass hot core at 0.06'' resolution at submm wavelengths in the dense gas and dust emission allowed us to trace the fragmenting core and the gravitationally stable inner rotating disk-like structure. A temperature analysis reveals hot gas and comparably colder dust that may be attributed to different disk locations traced by dust emission and gas lines. The kinematics of the central structure #1 reveal contributions from a rotating disk, an infalling envelope, and potentially an outflow as well, whereas the spectral profile toward source #2 can be attributed to infall.

    Related items

    Showing items related by title, author, creator and subject.

    • Hot High-Mass Accretion Disk Candidates
      Beuther, H.; Walsh, Andrew; Longmore, S. (2009)
      To better understand the physical properties of accretion disks in high-mass star formation, we present a study of a dozen high-mass accretion disk candidates observed at high spatial resolution with the Australia Telescope ...
    • Kinematics of a Hot Massive Accretion Disk Candidate
      Beuther, H.; Walsh, Andrew (2008)
      Characterizing rotation, infall, and accretion disks around high-mass protostars is an important topic in massive star formation research. With the Australia Telescope Compact Array and the Very Large Array, we studied a ...
    • A cluster in the making: ALMA reveals the initial conditions for high-mass cluster formation
      Rathborne, J.; Longmore, S.; Jackson, J.; Alves, J.; Bally, J.; Bastian, N.; Contreras, Y.; Foster, J.; Garay, G.; Kruijssen, J.; Testi, L.; Walsh, Andrew (2015)
      © 2015. The American Astronomical Society. All rights reserved. G0.253+0.016 is a molecular clump that appears to be on the verge of forming a high-mass cluster: its extremely low dust temperature, high mass, and high ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.